

MUR

Science Pillars of the ASTRI Mini-Array

Stefano Vercellone – INAF Osservatorio Astronomico di Brera for the ASTRI Project

ASTRI Project Committee, 29.11.2021

Paper – I (Scuderi et al): The ASTRI Mini-Array of Cherenkov Telescopes at the Observatorio del Teide We present a detailed description of the ASTRI Project, namely the ASTRI Mini-Array technological solutions and suggest a possible observing plan, based on the sources discussed in Paper – II [see Salvo's + Gino's + Andrea's talks].

Paper – II (Vercellone et al): ASTRI Mini-Array Core Science at the Observatorio del Teide We discuss the science themes that we will investigate during the first 3 to 4 years of the ASTRI Mini-Array observing life, when it will be run as an experiment by the ASTRI Mini-Array collaboration. Most of this presentation is devoted to a discussion of a few of them.

Paper – III (D'Ai' et al): Galactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide

Paper – IV (Saturni et al): Extra-galactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide

We report the expected results on Galactic and extra-galactic sources, respectively, that the ASTRI Mini-Array will achieve during its observatory phase, i.e. after the completion of the core science observing period.

&

Stefano Vercellone, ASTRI Project Committee, 2021/11/29

The ASTRI Mini-Array **Core Science Paper**

- Resubmitted to internal reviewers ${ }^{ \bullet }$
- Waiting for the sign-in procedure

ASTRI Mini-Array Core Science at the *Observatorio del Teide*

S. Vercellone^{*a*,*}, C. Bigongiari^{*b*}, A. Burtovoi^{*c*,*d*}, M. Cardillo^{*e*}, O. Catalano^{*f*}, A. Franceschini^{*g*},

- S. Lombardi^{b,h}, L. Nava^a, F. Pintoreⁱ, A. Stamerra^b, F. Tavecchio^a, L. Zampieri^d, R. Alves Batista^r,
- E. Amato^{*j*,*k*}, L. A. Antonelli^{*b*,*h*}, C. Arcaro^{*d*,*l*}, J. Becerra González^{*m*,*n*}, G. Bonnoli^{*o*}, M. Böttcher^{*l*},
- G. Brunetti^{*u*}, P. A. Caraveo^{*i*}, A. A. Compagnino^{*f*}, S. Crestan^{*v*,*i*}, A. D'Ai^{*f*}, M. Fiori^{*g*}, G. Galanti^{*a*},
- A. Giuliani^{*i*}, E. M. de Gouveia Dal Pino^{*p*}, J. G. Green^{*b*}, A. Lamastra^{*b*,*h*}, M. Landoni^{*a*}, F. Lucarelli^{*b*,*h*},
- G. Morlino^j, B. Olmi^j, G. Pareschi^a, E. Peretti^q, G. Piano^e, G. Ponti^a, E. Poretti^{a,t}, P. Romano^a,
- F. G. Saturni^{b,h}, S. Scuderiⁱ, A. Tutone^f, G. Umana^s, J. A. Acosta-Pulido^{m,n}, P. Barai^p, G. Bonanno^s,
- D. A. Falceta-Gonçalves^{*p*}, R. J. García López^{*m*,*n*}, M. Kreter^{*l*}, A. López Oramas^{*m*,*n*}, G. Naletto^{*g*},
- J. C. Rodríguez Ramírez^{*p*}, G. Romeo^{*s*}, R. Santos de Lima^{*p*}, M. V. del Valle^{*p*}, M. L. Vázquez
- Acosta^{*m*,*n*}, N. Žywucka^{*l*} and **many many others**
- ^aINAF, Osservatorio Astronomico di Brera, Sede di Merate, Via Emilio Bianchi 46, I-23807 Merate (LC), Italy
- ^bINAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monte Porzio Catone (Roma), Italy
- ^cCISAS, Centre of Studies and Activities for Space "G. Colombo", University of Padova, Via Venezia 15, I-35131 Padova, Italy
- ^dINAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy
- eINAF, Istituto di Astrofisica e Planetologia Spaziale, Via Fosso del Cavaliere 100, I-00133 Roma, Italy
- ^fINAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Ugo la Malfa 153, I-90146 Palermo , Italy
- ⁸ UNIPD, Dipartimento di Fisica ed Astronomia "Galileo Galilei", Vicolo dell'Osservatorio 3, I-35122 Padova, Italy
- ^hASI, Space Science Data Center, Via del Politecnico s.n.c., I-00133 Roma, Italy
- ¹INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Alfonso Corti 12, I-20133 Milano , Italy
- ^rRadboud University Nijmegen, Nijmegen, Gelderland, Netherland
- JINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy
- ^kDipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- ¹Centre for Space Research, North-West University, 2520 Potchefstroom, South Africa
- ^mInstituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
- ⁿUniversidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
- ^oUniversità di Siena and INFN Pisa, I-53100 Siena, Italy
- "INAF, Istituto di Radioastronomia, Via P. Gobetti 101, I-40129 Bologna, Italy
- ^vUniversità degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
- ^pInstituto de Astronomia, Geofisica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
- ^qGSSI, Gran Sasso Science Institute, Via M. Iacobucci 2, I-67100 L'Aquila, Italy
- ^tINAF, Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, 38712 Breña Baja (TF), Spain
- ^sINAF, Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania, Italy

ARTICLE INFO

Keywords: Cherenkov Arrays γ rays

ABSTRACT

The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project led by the Italian National Institute for Astrophysics (INAF) is developing and will deploy at the Observatorio del Teide a mini-array (ASTRI Mini-Array) composed of nine telescopes similar to the small-size dual-mirror Schwarzschild-Couder telescope (ASTRI-Horn) currently operating on the slopes of Mt. Etna in Sicily. The ASTRI Mini-Array will surpass the current Cherenkov telescope array differential sensitivity above a few tera-electronvolt (TeV), extending the energy band well above hundreds of TeV. This will allow us to explore a new window of the electromagnetic spectrum, by convolving the sensitivity performance with excellent angular and energy resolution figures. In this paper we describe the Core Science that we will address during the first four years of operation, providing examples of the breakthrough results that we will obtain when dealing with current open questions, such as the acceleration of cosmic rays, cosmology and fundamental physics and the new window, for the TeV energy band, of the time-domain astrophysics.

*Principal Corresponding author

📓 stefano.vercellone@inaf.it (S. Vercellone)

ORCID(s): 0000-0003-1163-1396 (S. Vercellone); 0000-0002-8734-808X (A. Burtovoi); 0000-0001-8877-3996 (M. Cardillo); 0000-0002-6336-865X (S. Lombardi); 0000-0001-5960-0455 (L. Nava); 0000-0002-3869-2925 (F. Pintore); 0000-0003-2656-064X (R. Alves Batista); 0000-0002-9881-8112 (E. Amato); 0000-0002-8434-5692 (M. Böttcher); 0000-0002-5042-1036 (A. D'Aì); 0000-0002-7352-6818 (M. Fiori); 0000-0002-4315-1699 (A. Giuliani);

1 Introduction

Contents

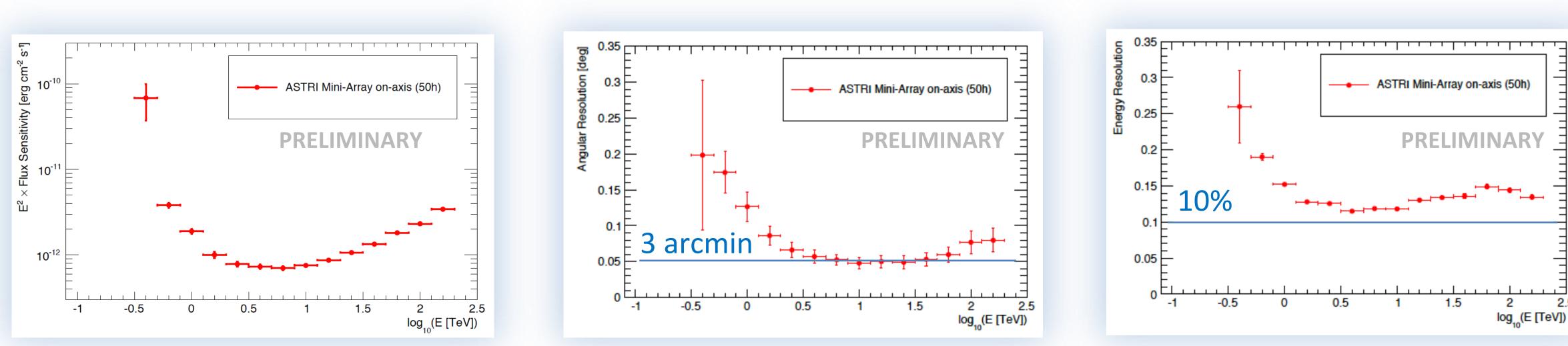
3

0000-0001-8058-4752 (E. M. de Gouveia Dal Pino); 0000-0003-2403-913X (A. Lamastra); 0000-0002-5014-4817 (G. Morlino); 0000-0001-6022-8216 (B. Olmi); 0000-0003-0543-0467 (E. Peretti); 0000-0002-9332-5319 (G. Piano); 0000-0003-0258-7469 (P. Romano); 0000-0002-1946-7706 (F. G. Saturni); 0000-0002-2840-0001 (A. Tutone)

Paper Layout

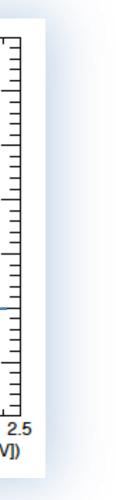
2.1 2.2 2.3	RI Mini-Array Expected Performance Monte-Carlo SimulationsScientific SoftwarePerformance2.3.1On-axis performance2.3.2Off-axis performance	3 3 4 5 5 6 6	The Multi-wavelength Landscape10.1 Science at the "Islas Canarias"10.2 X-ray and γ-ray facilities10.3 Optical and radio facilitiesThe ASTRI Mini-Array Legacy	45 45 46 46	
3.1 3.2 3.3	Beyond the current IACTs \dots \dots \dots HAWC, LHAASO and Tibet AS γ \dots \dots Performance in a context \dots \dots	7 9 10			
	RI Mini-Array Core Science and Simulation				
Setu	_	11			
4.1 4.2	Core science: the Pillar concept	11 11			
т. <i>2</i>	4.2.1 Ctools simulations	11			
	4.2.2 Gammapy simulations	12			
	4.2.3 The Naima Package	12			
0:11-	n 1. Onigin of Cognic Dava	10			
Рша 5.1	r–1: Origin of Cosmic Rays The Quest for PeVatrons	12 14			
.1	5.1.1 Supernova Remnants: Tycho	15			
	5.1.2 Galactic Center	15			
	5.1.3 Other Possible PeVatron Candidates	17			
5.2	Particle escape and propagation	19			
	5.2.1 γ -Cygni	20			
5.3	5.2.2 W28	21			
	ulae	22 23			
	5.3.2 Geminga	25 25			
5.4	Ultra High Energy Cosmic Rays from Star- burst Galaxies	26			
Pilla 5.1	r–2: Cosmology and Fundamental Physics TeV observations and constraints on the extra-	28			
	galactic infrared background light (IR EBL)	29			
5.2	Probing intergalactic magnetic fields	32			
5.3	Blazars as probes for hadron beams	33			
5.4	Test on the existence of axion-like particles	34			
5.5	Lorentz Invariance violation studies	35			
GRB	8 & Time-domain Astrophysics	36			
7.1	Alerts from GRBs and GWs	37			
7.2 7.3	Alerts from neutrino and associated blazars Legacy Products, Multi-wavelength Syner-	39			
	gies, Coordinated Observations	39			
Dire	ct measurement of cosmic rays	39			
8.1	Scientific Rationale	39			
8.2	Cosmic ray heavy nuclei	40			
8.3	Measurement of the <i>Knee</i>	40			
8.4	Muons sampling technique	42			
8.5	Analysis Method	42			
Stell	ar Intensity Interferometry	42			
	- •				

3.3 Performance in a context 10 SSTRI Mini-Array Core Science and Simulation setup 11 1.1 Core science: the Pillar concept 11 1.2 Scientific simulations setup 11 4.2.1 Colos simulations 12 4.2.2 Gammapy simulations 12 4.2.3 The Naima Package 12 7.1 The Quest for PeVatrons 14 5.1.1 Supernova Remnants: Tycho 15 5.1.2 Galactic Center 15 5.1.3 Other Possible PeVatron Candidates 17 5.2 Predice scape and propagation 19 5.2.1 Calactic Center 20 5.2.2 W28 21 5.3.1 Grab nebula 22 5.3.1 Cab nebula 22 5.3.1 Cab nebula 23 5.3.2 Geninga 25 burst Galaxies 26 Pillar-2: Cosmology and Fundamental Physics 28 5.1 Tev observations and constraints on the extragalactic infrared background light (IR EBL) 29 5.2 Bre	2.1 2.2 2.3 High 3.1 3.2	RI Mini-Array Expected Performance Monte-Carlo Simulations Scientific Software Performance 2.3.1 On-axis performance 2.3.2 Off-axis performance Performance And Very High-Energy Observatories Beyond the current IACTs HAWC, LHAASO and Tibet ASγ	3 3 4 5 5 6 6 7 9	The Multi-wavelength Landscape 10.1 Science at the "Islas Canarias" 10.2 X-ray and γ-ray facilities 10.3 Optical and radio facilities The ASTRI Mini-Array Legacy	45 45 46 46	
4.2Scientific simulations setup11 $4.2.1$ Ctools simulations11 $4.2.2$ Gammapy simulations12 $4.2.3$ The Naima Package12Pillar-1:Origin of Cosmic Rays12 5.1 The Quest for PeVatrons14 $5.1.1$ Supernova Remnants: Tycho15 $5.1.2$ Galactic Center15 $5.1.3$ Other Possible Pe Vatron Candidates17 5.2 Particle escape and propagation19 $5.2.1$ $r-Cygni$ 20 $5.2.2$ W2821 $5.3.1$ Crab nebula23 $5.3.2$ Geminga25 $5.1.1$ Ctab nebula23 $5.3.2$ Geminga25 $5.3.1$ Crab nebula23 $5.3.2$ Geminga26Pillar-2:Cosmology and Fundamental Physics28 5.1 TeV observations and constraints on the extra- galactic infrared background light (IR EEL)29 5.2 Probing intergalactic magnetic fields32 5.3 Blazars as probes for hadron beams33 5.4 Utra Finge Modula Storphysics36 7.1 Alerts from GRBs and GWs37 7.2 Alerts from Gubard and GWs37 7.3 Legacy Products, Multi-wavelength Syner gies, Coordinated Observations39Direct measurement of the <i>Knee</i> 40 8.4 Muons sampling technique42 5.5 Analysis Method42	AST Setu	RI Mini-Array Core Science and Simulation	11			
5.1 The Quest for PeVatrons 14 5.1.1 Supernova Remnants: Tycho 15 5.1.2 Galactic Center 15 5.1.3 Other Possible PeVatron Candidates 17 7.1 Particle escape and propagation 19 5.2.1 y-Cygni 20 5.2.2 W28 21 5.3 High energy emission from Pulsar Wind Neb- ulae 22 5.3.1 Crab nebula 23 5.3.2 Geminga 25 5.4 Ultra High Energy Cosmic Rays from Starburst Galaxies 26 Pillar-2: Cosmology and Fundamental Physics 28 5.1 TeV observations and constraints on the extra- galactic infrared background light (IR EBL) 29 7.2 Porbing intergalactic magnetic fields 32 5.3 Bizaras as probes for hadron bearns 33 5.4 Test on the existence of axion-like particles 34 5.5 Lorentz Invariance violation studies 35 GRB & Time-domain Astrophysics 36 7.1 Legacy Products, Multi-wavelength Syner- gies, Coordinated Observations. 39 7.2 Legacy P		Scientific simulations setup	11 11 12			
5.1.3 Other Possible PeVatron Candidates 17 5.2 Particle escape and propagation 19 9 5.2.1 y-Cygni 20 20 5.2.2 W28		The Quest for PeVatrons5.1.1Supernova Remnants: Tycho	14 15			
ulae 22 5.3.1 Crab nebula 23 5.3.2 Geminga 25 5.4 Ultra High Energy Cosmic Rays from Starburst Galaxies 26 Pillar-2: Cosmology and Fundamental Physics 28 5.1 TeV observations and constraints on the extragalactic infrared background light (IR EBL) 29 5.2 Probing intergalactic magnetic fields 32 5.3 Blazars as probes for hadron beams 33 5.4 Test on the extistence of axion-like particles 34 5.5 Lorentz Invariance violation studies 35 GRB & Time-domain Astrophysics 36 7.1 Alerts from RGBs and GWs 37 7.2 Alerts from neutrino and associated blazars 39 7.3 Legacy Products, Multi-wavelength Synergies, Coordinated Observations. 39 8.1 Scientific Rationale 39 8.2 Cosmic ray heavy nuclei 40 8.3 Measurement of the <i>Knee</i> 40 8.4 Muons sampling technique 42		5.1.3Other Possible PeVatron CandidatesParticle escape and propagation. $5.2.1$ γ -Cygni $5.2.2$ W28	17 19 20			
Pillar-2: Cosmology and Fundamental Physics285.1TeV observations and constraints on the extragalactic infrared background light (IR EBL)295.2Probing intergalactic magnetic fields325.3Blazars as probes for hadron beams335.4Test on the existence of axion-like particles345.5Lorentz Invariance violation studies35 GRB & Time-domain Astrophysics 367.1Alerts from GRBs and GWs377.2Alerts from neutrino and associated blazars397.3Legacy Products, Multi-wavelength Synergies, Coordinated Observations.399Sicentific Rationale398.1Scientific Rationale408.3Measurement of the <i>Knee</i> 408.4Muons sampling technique42		ulae	23			
galactic infrared background light (IR EBL)295.2Probing intergalactic magnetic fields	Pilla					
7.1Alerts from GRBs and GWs377.2Alerts from neutrino and associated blazars397.3Legacy Products, Multi-wavelength Synergies, Coordinated Observations.39Direct measurement of cosmic rays398.1Scientific Rationale398.2Cosmic ray heavy nuclei408.3Measurement of the <i>Knee</i> 408.4Muons sampling technique428.5Analysis Method42	5.2 5.3 5.4	galactic infrared background light (IR EBL) Probing intergalactic magnetic fields Blazars as probes for hadron beams Test on the existence of axion-like particles	32 33 34			
8.1Scientific Rationale398.2Cosmic ray heavy nuclei408.3Measurement of the <i>Knee</i> 408.4Muons sampling technique428.5Analysis Method42	7.1 7.2	Alerts from GRBs and GWs Alerts from neutrino and associated blazars Legacy Products, Multi-wavelength Syner-	37 39			
Stellar Intensity Interferometry 42	8.1 8.2 8.3 8.4	ct measurement of cosmic rays Scientific Rationale Cosmic ray heavy nuclei Measurement of the Knee Muons sampling technique	39 39 40 40 42			
	Stell	ar Intensity Interferometry	42			


2	ASTRI Mini-Array Expected Performance 2.1 Monte-Carlo Simulations 2.2 Scientific Software 2.3 Performance 2.3.1 On-axis performance 2.3.2 Off-axis performance	3 3 4 5 5 6	 10 The Multi-wavelength Landscape 10.1 Science at the "Islas Canarias" 10.2 X-ray and γ-ray facilities 10.3 Optical and radio facilities 11 The ASTRI Mini-Array Legacy 	45 45 46 46
3	 High- and Very High-Energy Observatories 3.1 Beyond the current IACTs	6 7 9 10		
4	ASTRI Mini-Array Core Science and Simulation Setup 4.1 Core science: the Pillar concept	11 11 11 11		
5	 Pillar–1: Origin of Cosmic Rays 5.1 The Quest for PeVatrons 5.1.1 Supernova Remnants: Tycho 5.1.2 Galactic Center 5.1.3 Other Possible PeVatron Candidates 5.2 Particle escape and propagation 5.2.1 γ-Cygni 5.2.2 W28 5.3 High energy emission from Pulsar Wind Nebulae 5.3.1 Crab nebula 5.3.2 Geminga 5.4 Ultra High Energy Cosmic Rays from Starburst Galaxies 	 12 14 15 17 19 20 21 22 23 25 26 		
6	 Pillar–2: Cosmology and Fundamental Physics 6.1 TeV observations and constraints on the extra- galactic infrared background light (IR EBL) 6.2 Probing intergalactic magnetic fields 6.3 Blazars as probes for hadron beams 6.4 Test on the existence of axion-like particles 6.5 Lorentz Invariance violation studies 	29 32 33 34 35		
7	 GRB & Time-domain Astrophysics 7.1 Alerts from GRBs and GWs 7.2 Alerts from neutrino and associated blazars 7.3 Legacy Products, Multi-wavelength Synergies, Coordinated Observations 	36 37 39 39		
8	Direct measurement of cosmic rays8.1Scientific Rationale8.2Cosmic ray heavy nuclei8.3Measurement of the Knee8.4Muons sampling technique8.5Analysis Method	39 39 40 40 42 42		
9	Stellar Intensity Interferometry	42		

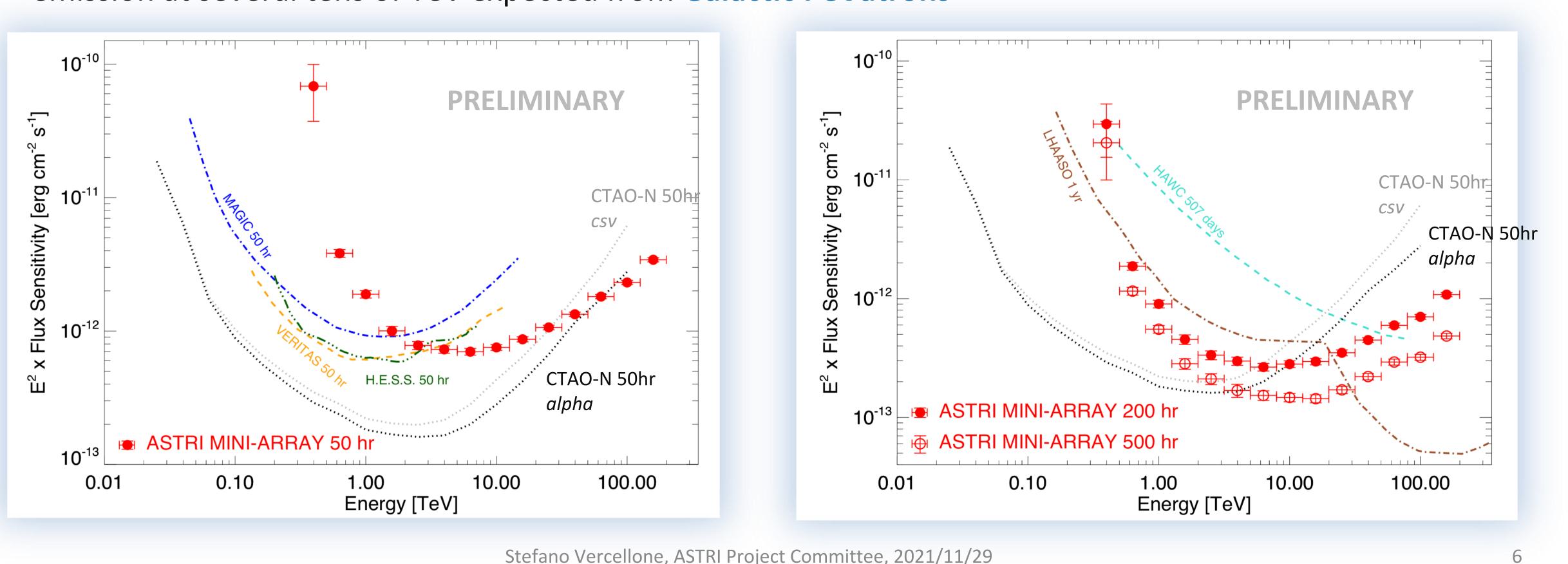
The ASTRI Mini-Array – Performance

- (~2) of the on-axis performance up to ~3°(~5°)
- field of view of several squared degrees.



• The off-axis performance remains in the entire energy range within a factor of ~1

It allows the system to preserve a performance close to the best one over a wide


Stefano Vercellone, ASTRI Project Committee, 2021/11/29

The ASTRI Mini-Array – Performance

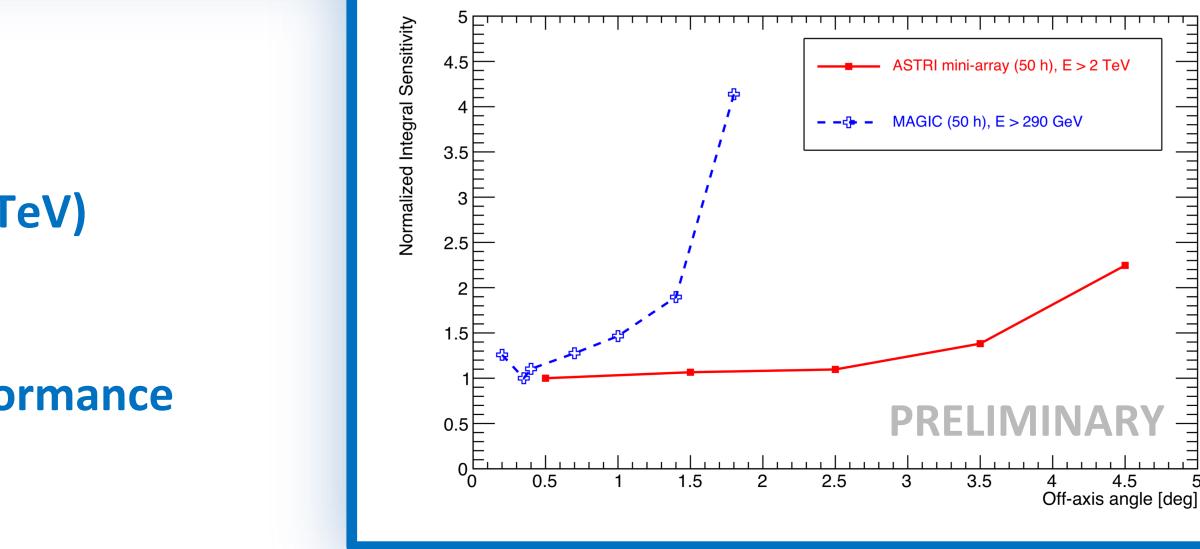
- We extend current IACTs differential sensitivity up to several tens of TeV and beyond
- emission at several tens of TeV expected from Galactic PeVatrons

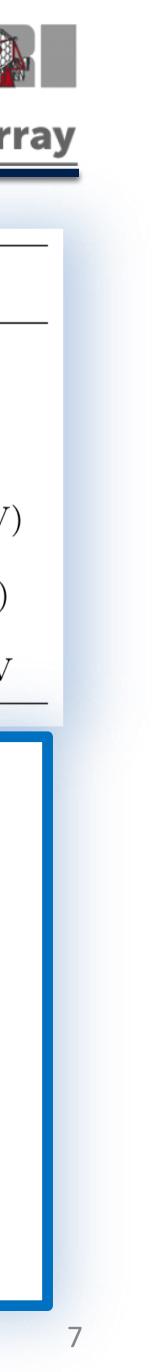
Investigate possible spectral features at VHE, such as the presence of spectral cut-offs or the detection of

The ASTRI Mini-Array – Performance

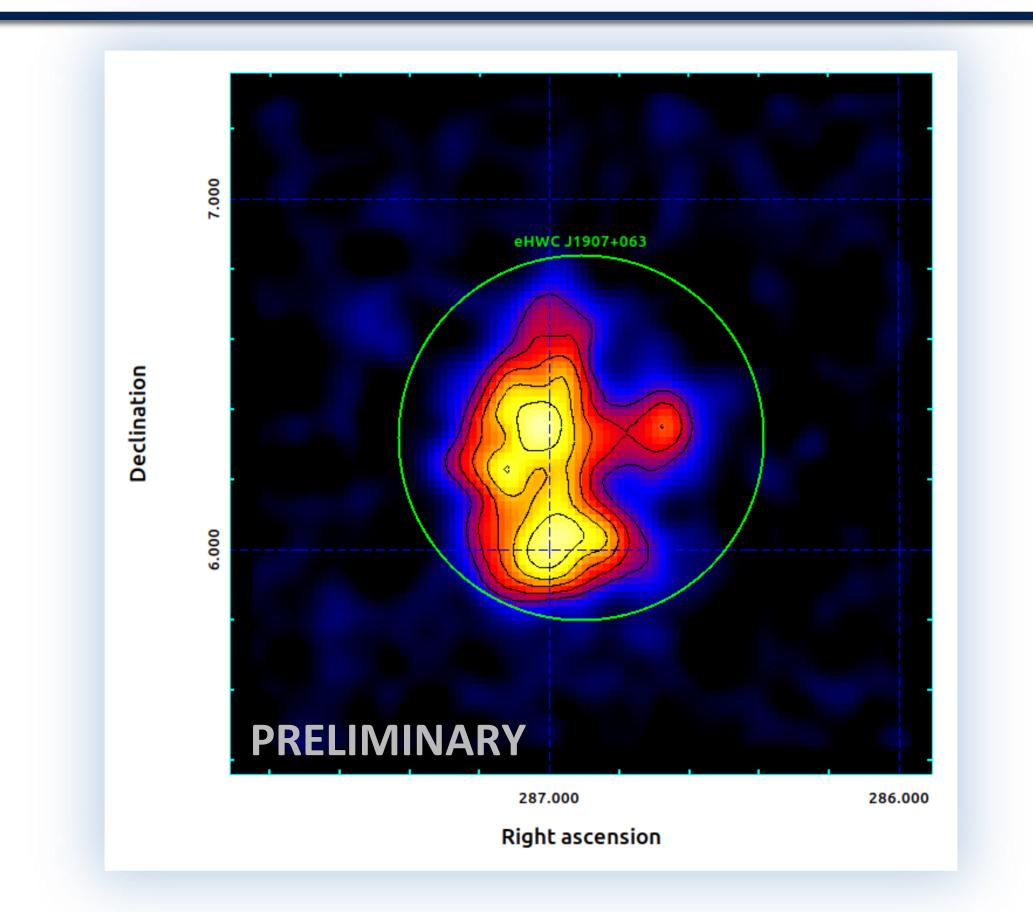
PRELIMINARY	ASTRI Mini-Array	MAGIC	VERITAS	H.E.S.S.	HAWC	LHAASO	Tibet $\mathbf{AS}\gamma$
Altitude [m]	$2,\!390$	$2,\!396$	1,268	1,800	$4,\!100$	$4,\!410$	$4,\!300$
${f FoV}$	$\sim 10^\circ$	$\sim 3.5^{\circ}$	$\sim 3.5^\circ$	$\sim 5^{\circ}$	$2{ m sr}$	$2\mathrm{sr}$	$2{ m sr}$
Angular Res.	$0.05^\circ (30 \mathrm{TeV})$	$0.07^{\circ} (1 \mathrm{TeV})$	$0.07^{\circ} (1 \mathrm{TeV})$	$0.06^{\circ} (1 \mathrm{TeV})$	$0.15^{\circ} (10 \mathrm{TeV})$	$(0.24-0.32)^{\circ} (100 \mathrm{TeV})$	$\sim 0.2^{\circ} \ (100 {\rm TeV})$
Energy Res.	$12\%~(10{\rm TeV})$	$16\% \ (1 \mathrm{TeV})$	$17\% \ (1 \mathrm{TeV})$	15% (1 TeV)	$30\%~(10{\rm TeV})$	(13-36)% (100 TeV)	$20\%~(100{\rm TeV})$
Energy Range	$(0.3-200)\mathrm{TeV}$	$(0.05-20){ m TeV}$	$(0.08-30){ m TeV}$	$(0.02-30)\mathrm{TeV}$	$(0.1-1,000){ m TeV}$	$(0.1-1,000){ m TeV}$	$(0.1-1,000){ m TeV}$

Sensitivity: better than current IACTs ($E \gtrsim 3$ TeV) Extended spectrum and cut-off constraints

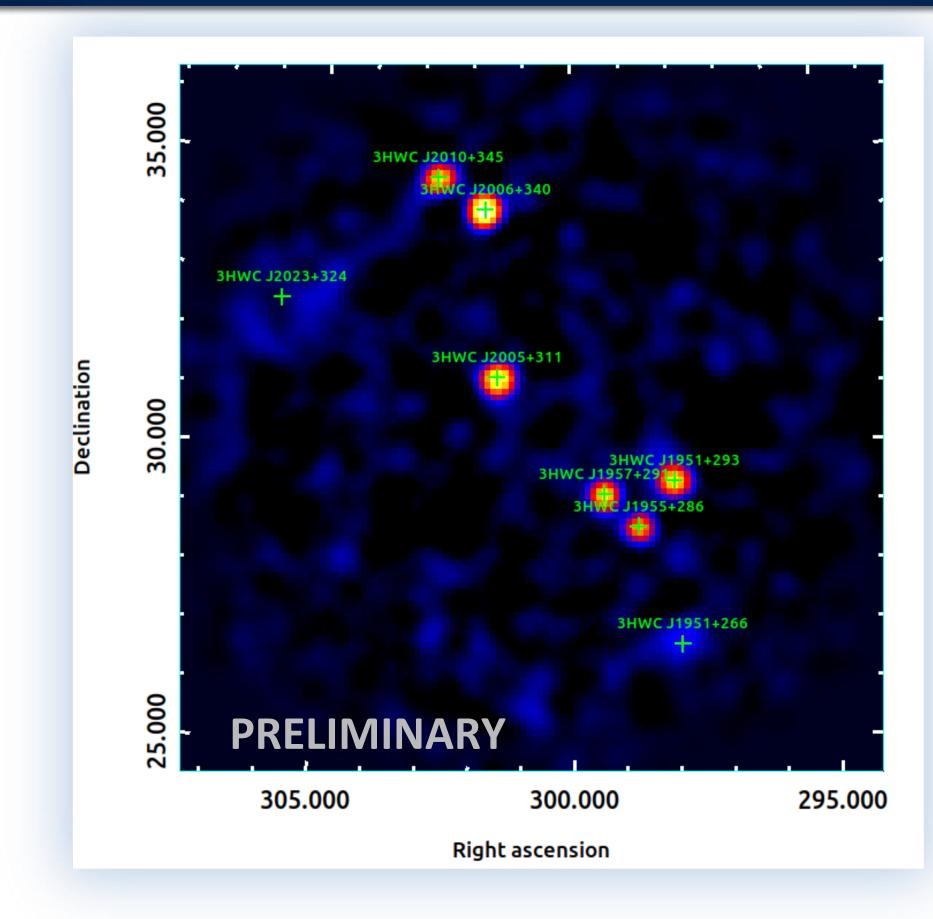

Energy/Angular resolution: ~10% / ~0.05° (E =10 TeV) Characterize extended sources morphology


10° field of view with homogeneous off-axis performance Multi-target fields and extended sources Enhanced chance for serendipitous discoveries

Stefano Vercellone, ASTRI Project Committee, 2021/11/29



Mini-Array


Angular resolution and large field of view

ASTRI Mini-Array 200 hr simulation (up to E~200 TeV) of the region of the Galactic source 2HWC J1908+063. The light green circle marks the $\sim 0.52^{\circ}$ HAWC errorbox for E > 56 TeV

ASTRI Mini-Array 200 hr simulation of the Cygnus **Region**. Green crosses mark the positions of the 3HWC sources in a $10^{\circ} \times 10^{\circ}$ field of view

The LHAASO PeVatrons

Cao et al., 2021, Nature

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age $(kyr)^a$	$L_s (\text{erg/s})^b$	Pote
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	$2.8 imes 10^{36}$	HES
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HV
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes 10^{36}$	2HV
	PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes 10^{36}$	HES
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$	_	HES
						2HV
LHAASO J1849-0003	PSR J1849-0001	PSR	7^g	43.1	$9.8 imes 10^{36}$	HES
	W43	YMC	5.5^h	—	_	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^{i}	$\sim 10 - 20^j$	_	MG
	PSR 1907+0602	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARC
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$	2HV
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HV
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HES
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	_	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HV
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	—	—	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7}_{-1.4}$ l	17.2	$3.4 imes 10^{36}$	MG
	Sh 2-104	H II/YMC	$3.3 \pm 0.3^m/4.0 \pm 0.5^n$	_	_	VEF
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o			TeV
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	$1.5 imes 10^{35}$	MG
	SNR G79.8+1.2	SNR candidate	—	_	_	VEF
LHAASO J2108+5157	_	—	_	_	_	
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^p	$\sim 10^p$	_	VER
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	2.2×10^{37}	

The **ASTRI Mini-Array** will investigate these and future PeVatron sources, providing both the opportunity for their precise identification and important information on their morphology

tential TeV Counterpart^c ab, Crab Nebula ESS J1825-137, HESS J1826-130, IWC J1825-134 IWC J1837-065, HESS J1837-069, ESS J1841-055 ESS J1843-033, HESS J1844-030, IWC J1844-032 ESS J1849-000, 2HWC J1849+001

GRO J1908+06, HESS J1908+063, RGO J1907+0627, VER J1907+062, IWC 1908+063 IWC J1928+177, 2HWC J1930+188, ESS J1930+188, VER J1930+188

IWC J1955+285

GRO J2019+37, VER J2019+368, ER J2016+371 V J2032+4130, ARGO J2031+4157, GRO J2031+41, 2HWC J2031+415, ER J2032+414

ER J2227+608, Boomerang Nebula

Discovery of **12** sources emitting at several hundreds of TeV, up to 1.4 PeV

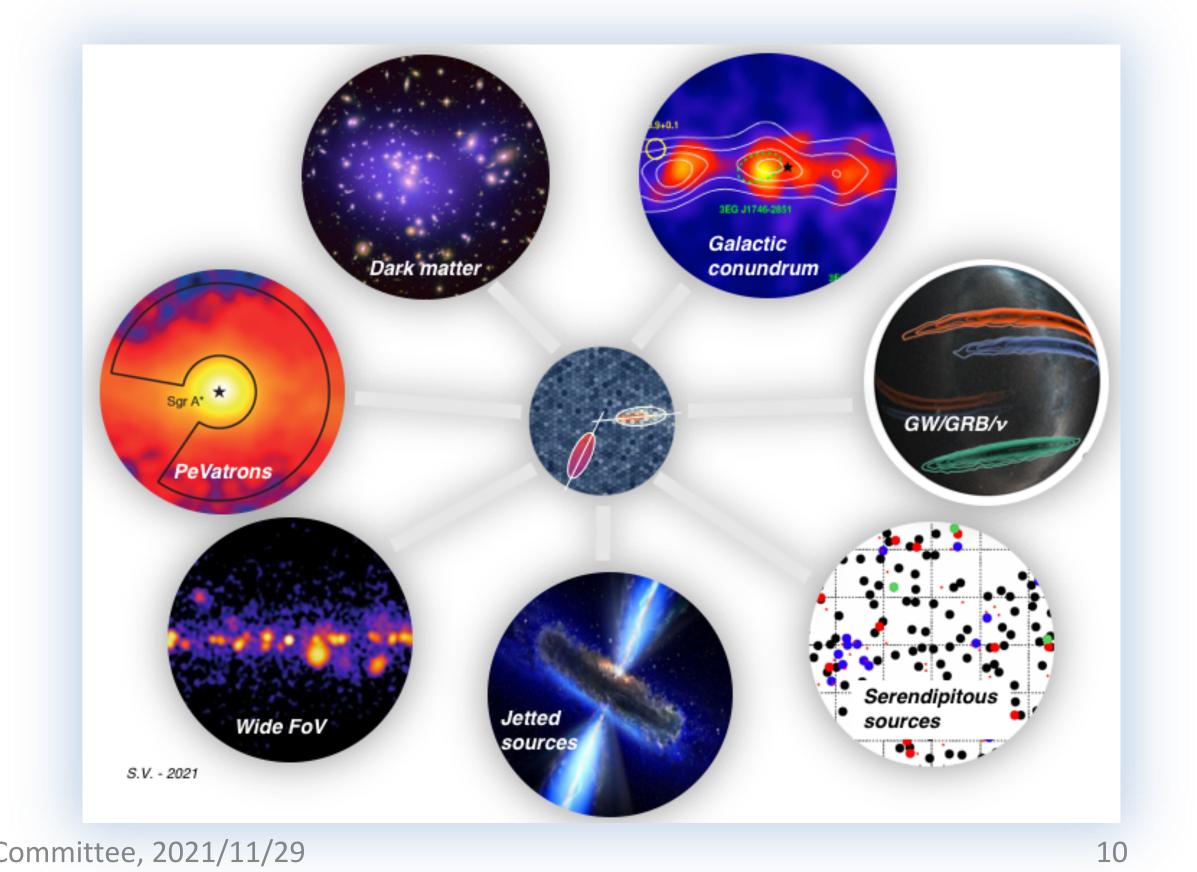
Crab apart, the majority of remaining sources represent **diffuse** γ-ray structures with angular extensions up to 1°, and all of them are located along the Galactic plane

The actual sources responsible for the ultra high-energy γ -rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators

The Pillars' concept

First four years specific science topics \rightarrow robust answers to a few well-determined open questions

10° field of view \rightarrow simultaneously investigate more than one source during the same pointing


Pillar 1 – The origin of cosmic rays

The quest for PeVatrons Particle escape and propagation High energy emission from Pulsar Wind Nebulae Ultra High Energy Cosmic Rays from Starburst Galaxies

Pillar 2 – Cosmology and Fundamental Physics

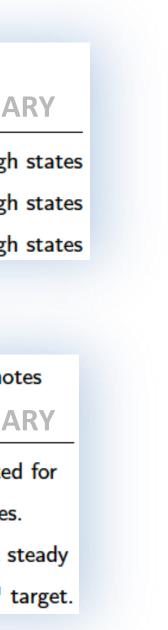
TeV observations and constraints on the IR EBL Probing intergalactic magnetic fields Blazars as probes for hadron beams Tests on the existence of axion-like particles Lorentz Invariance violation studies

Pillars' main scientific targets

Pillar-1

Name	RA	Dec	Туре	Zenith Angle ¹	Visibility ²	
PRELIMINARY	(deg)	(deg)		(deg)	(hr/yr)	
Tycho	6.36	64.13	SNR	35.8	410+340	
Galactic Center	266.40	-28.94	Diffuse	57.2	0+180	
VER J1907+062	286.91	6.32	SNR+PWN	22	400+170	
SNR G106.3+2.7	337.00	60.88	SNR	32.6	460+300	
γ-Cygni	305.02	40.76	SNR	12.5	460+160	
W28/HESS J1800-240B	270.11	-24.04	SNR/MC	51.6	0+300	
Crab	83.63	22.01	PWN	6.3	470+170	
Geminga	98.48	17.77	PWN	10.5	460+170	
M82	148.97	69.68	Starburst	41.4	310+470	

[see Andrea's talk for a preliminary observing plan]



Pillar-2

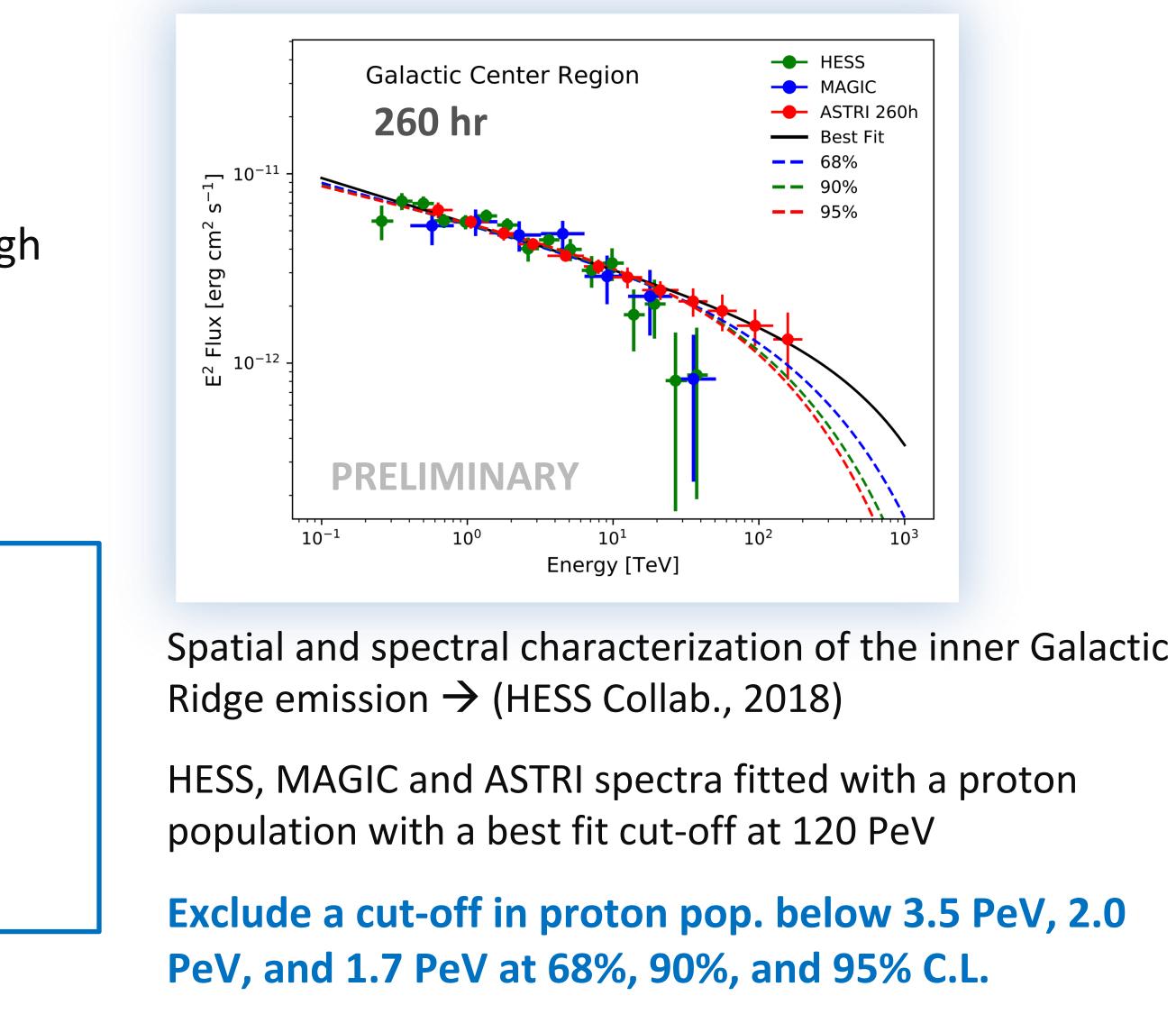
Target	Class	RA (J2000)	DEC (J2000)	Obs. time	ZA	Moon	Strategy, analysis, notes
IAU Name				[hr]	[deg]	[%]	PRELIMINA
IC 310	Radio gal.	03 16 43.0	+41 19 29	50-100	45	25	Better suited for ToO observations of high
M87	Radio gal.	12 30 47.2	+12 23 51	50-100	45	25	Better suited for ToO observations of high
Mkn 501	Blazar	16 53 52	+39 45 38	50-100	45	25	Better suited for ToO observations of high

Target	Class	RA (J2000)	DEC (J2000)	Obs. time	ZA	Moon	Strategy, analysis, note
IAU Name				[hr]	[deg]	[%]	PRELIMINA
Mkn 501	Blazar	16 53 52.2	+39 45 36.6	50-100	45	25	LIV, ALP. Better suited
							ToOs in high states.
1ES 0229+200	Blazar	02 32 48.6	+20 17 17.5	200	45	25	HB, LIV, ALP. Almost st
							source, possible "fill in" ta

The Galactic Center – a challenge in a challenge

It is a complex region harbouring several potential sources of particle acceleration

It can be observed by the ASTRI Mini-Array only at high zenith angles


Current IACTs detected emission with no significant cut-off up to a few tens of TeV

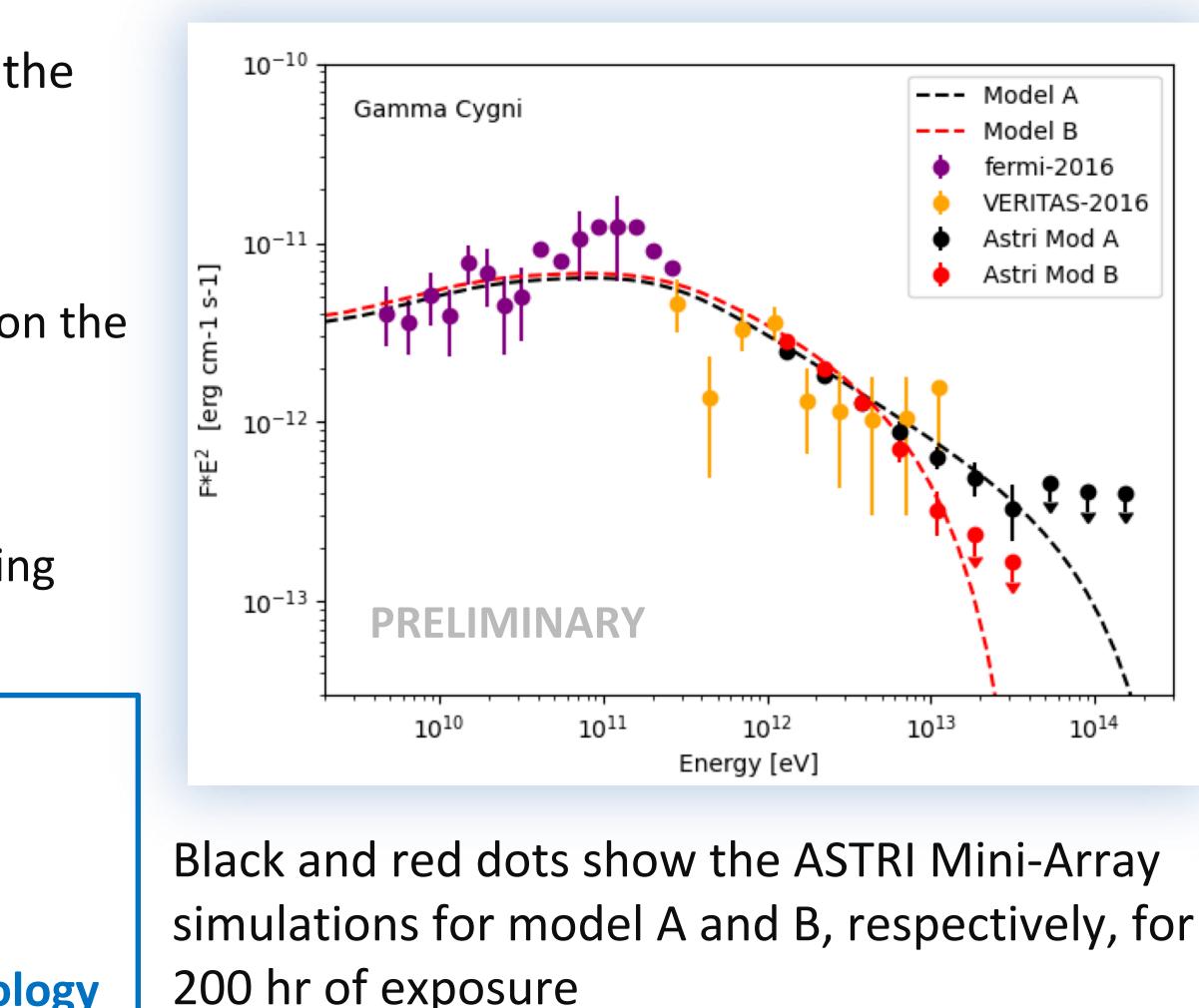
ASTRI Mini-Array assets

- the large FoV will allow us to map the whole GC region in a single observation
- the excellent angular resolution could help us to identify any HE source among several candidates

Mini-Array

Cosmic-ray propagation: γ-Cygni

 γ -Cygni (G78.2+2.1) is a middle-aged SNR located in the Cygnus region and discovered by VERITAS


HAWC observed this source, but HAWC's low angular resolution does not allow one to drive firm conclusion on the spatial structure

We simulated **2** possible spectral models (A and B) fitting the combined Fermi-LAT and VERITAS data

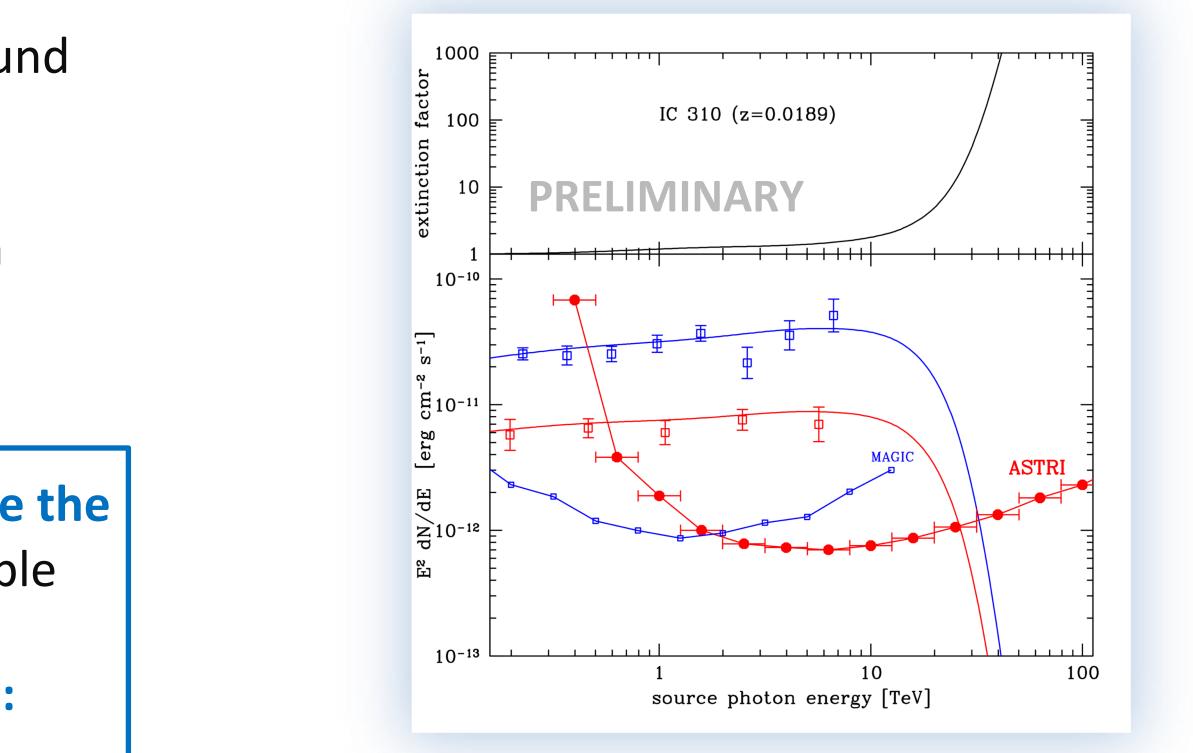
The ASTRI Mini-Array will constrain some physical parameters such as the maximum energy reached by protons and the diffusion coefficient

Moreover, it will investigate the VHE emission morphology

Stefano Vercellone, ASTRI Project Committee, 2021/11/29

EBL studies in the IR regime

From the mid-IR to the far-IR, where the IR background intensity is maximal, EBL direct measurements are prevented by the overwhelming dominance of local emission from both the Galaxy and our Solar system


 $\lambda_{max} \sim 1.24 \text{ x E}_{TeV} [\mu m]$

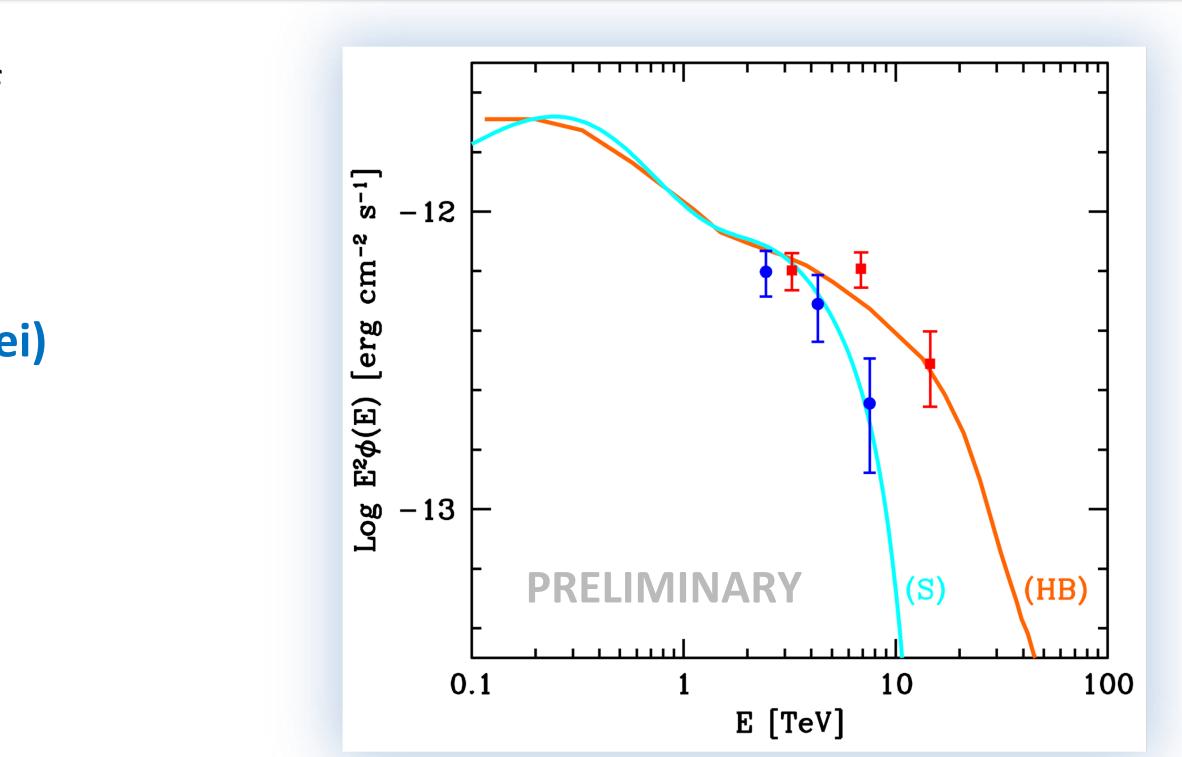
Measurements in the (10-30)TeV energy band probe the EBL in the ~(10-30)µm regime, otherwise unaccessible

Best candidates to constrain the EBL up to $\lambda \sim 100 \mu$ m: low-redshift radio galaxies M 87, IC 310, Centaurus A **local star-bursting and active galaxies** M 82, NGC 253, NGC 1068

Upper panel: extinction factor for photon-photon interaction on EBL at the IC 310 source distance.

Bottom panel: MAGIC (blue dots) and ASTRI Mini-Array (red dots) 50 hours, 5σ differential sensitivity

Fundamental physics – hadron beams


Relativitic jets from extreme BL Lacs could be one of the UHECR acceleration sites

Jets in extreme BL Lac objects could produce hadron beam (collimated beams of high-energy protons/nuclei)

While travelling towards the Earth

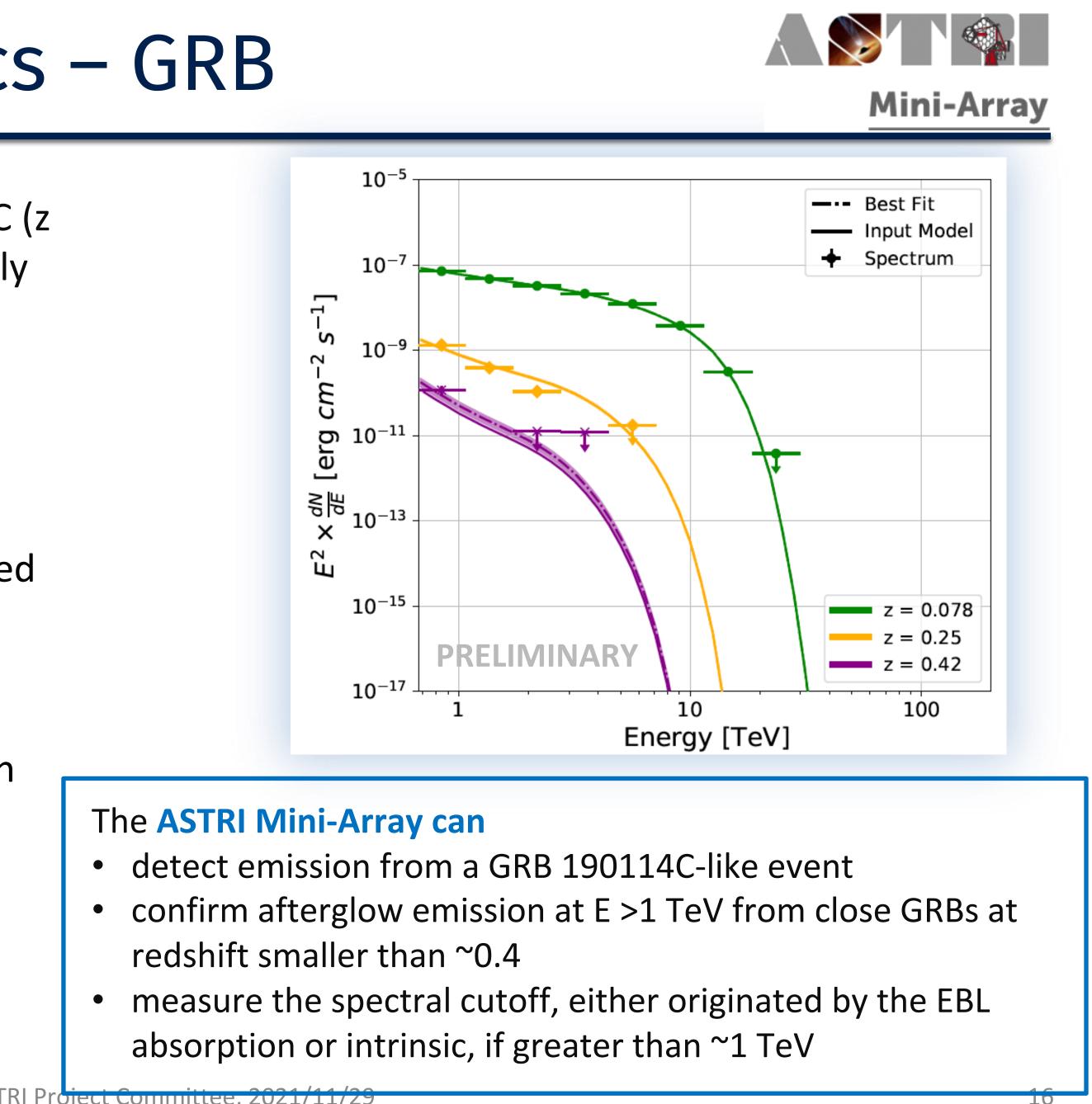
- UHECR lose energy through photo-meson and pair production
- these trigger the development of electromagnetic cascades producing γ and ν .
- Because of the reduced distance, γ experience a less severe EBL absorption
- The observed gamma-ray spectrum extends at energies much higher (E > 10TeV) than those allowed by the conventional EBL propagation

Simulated VHE spectrum of 1ES 0229+220 for the standard (light blue, 200 hr) and hadron beam (red, 250 hr) scenarios

The ASTRI Mini- Array would be able to obtain a significative detection up to 20 TeV with a deep (~250 hr) observation

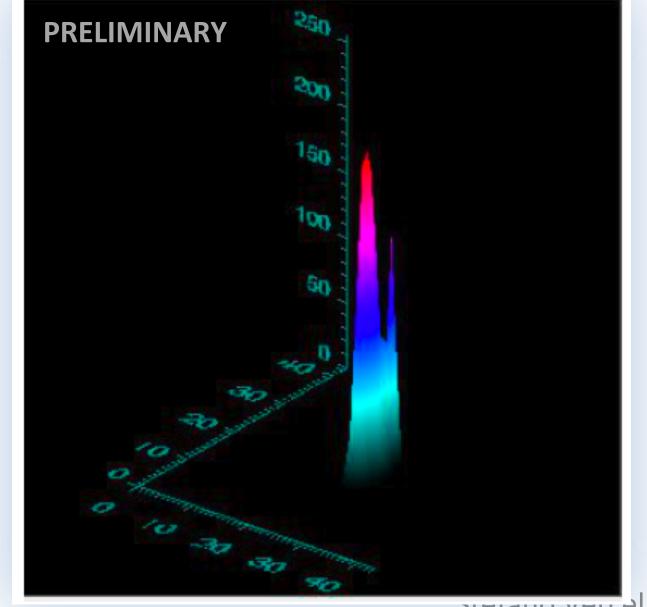
Time-domain astrophysics – GRB

The detection by the MAGIC telescopes of GRB190114C (z = 0.42) revealed the presence of a new and energetically relevant component in GRBs, likely SSC emission, extending into the TeV energy range.


We used GRB190114C as a template to simulate the emission from GRBs at shorter distances: z = 0.078(corresponding to the redshift of GRB 190829A, detected by H.E.S.S.), and the intermediate redshift z = 0.25.

To simulate the response of the ASTRI Mini-Array in the three different cases, we considered an observation starting 200 s after the burst and lasting 600 s.

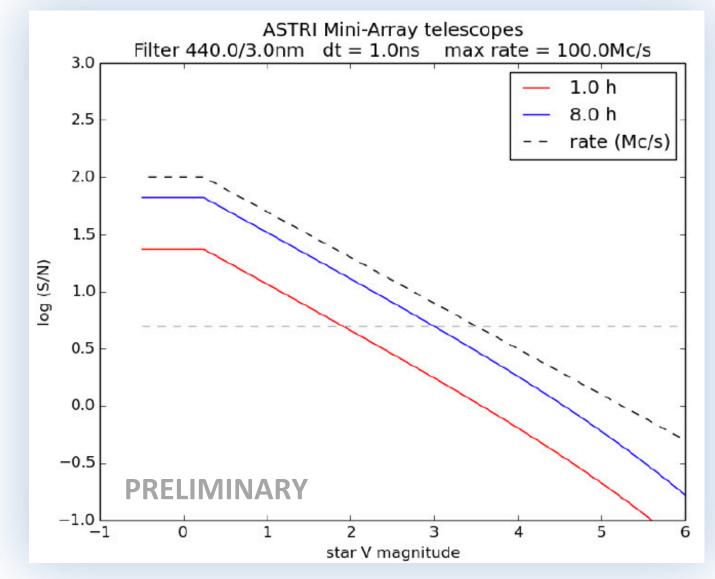
The expected number of follow-ups on observable GRBs is ~ 1 per month.


UHECR & Stellar Intensity Interferometry

UHECR

More than 99% of the observable component is hadronic in nature, it is recorded during normal observations and it could be used to perform UHECR direct measurements. The more efficient method for investigating heavy nuclei relies on the identification of a single high intensity pixel in the **camera images**, which lies between the reconstructed shower direction and the center of gravity of the shower.

Event recorded in the **ASTRI-Horn** camera.


A single bright pixel is outside the main Cherenkov image.

Stellar Intensity Interferometry

The ASTRI Mini-Array equipped with a SII instrument will provide the first images of bright Galactic stars with submas angular resolution. Stars with magnitude V< 3 are observable with the ASTRI Mini-Array telescopes with a S/N> 5, for an exposure time of < 8 hours. With 240 h/yr we then expect to be able to observe 3-8 bright and 14 average stars per year. [See Luca's talk]

Sterano vercellone, ASTRI Project Committee, 2021/11/29

To appear soon

GAL EGAL observatory papers

- Resubmitted to internal reviewers
- Waiting for the sign-in procedure

Extragalactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide

F. G. Saturni^{a,b,*}, C. H. E. Arcaro^c, B. Balmaverde^d, J. Becerra González^{e,f}, A. Caccianiga^g, M. Capalbi^h, A. Lamastra^a, S. Lombardi^{a,b}, F. Lucarelli^{a,b}, L. A. Antonelli^{a,b}, R. Alves Batistaⁱ, E. M. de Gouveia Dal Pino^j, R. Della Ceca^g, J. G. Green^{a,b}, A. Pagliaro^k, F. Tavecchio^g, S. Vercellone^g, A. Wolter^g and many many others

^aINAF – Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monte Porzio Catone (RM), Italy ^bASI – Space Science Data Center, Via del Politecnico snc, I-00133 Roma, Italy *INAF – Osservatorio Astronomico di Padova, V.lo Osservatorio 5, I-35122 Padova, Italy ^dINAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-10025 Pino Torinese (TO), Italy *Instituto de Astrofísica de Canarias, C/ Via Láctea s/n, E-38205 La Laguna (Tenerife), Spain ^fUniversidad de La Laguna, Depto. de Astrofísica, E-38206 La Laguna (Tenerife), Spain 8INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (LC), Italy ^bINAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy Radboud University Nijmegen, Dept. of Astrophysics/IMAPP, 6500 GL Nijmegen, The Netherlands Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Cidade Universitaria, R. do Matão 1226, BR-05508-090 São Paulo (SP), Brazil

ARTICLE INFO

Keywords: Te lescopes Cherenkov arrays Gamma rays: general Gamma rays: galaxies

Dark matter

ABSTRACT

The ASIRI Mini-Array is a next-generation system of nine imaging atmospheric Cherenkov telescopes that is going to be built at the Observatorio del Teide site. After a first phase, in which the instrument will be operated as an experiment prioritizing a schedule of primary science cases, an observatory phase is foreseen in which other significant targets will be pointed. We focus on the observational feasibility of extragalactic sources and on astrophysical processes that best complement and expand the ASTRI Mini-Array core science, presenting the most relevant examples that are at reach of detection over long-term time scales and whose observation can provide breakthrough achievements in the very-high energy extragalactic science. Such examples cover a wide range of y-ray emitters, from Seyfert 2 galaxies and extreme blazars to self-interacting dark matter. Simulations of the presented objects show that the instrument performance will be competitive at multi-TeV energies with respect to both current and future arrays of Cherenkov telescopes.

G	ontents		4.1	Mkn 4 4.1.1	21 and Mkn 501	12
1	Introduction	1		4.1.1	high flux states	12
2	Overview on the extragalactic science at TeV en-			4.1.2	Searches of very-high energy spec- tral features in Mkn 501	13
-	ergies	2	4.2	Blaza	rs beyond the local Universe	14
	 Emission of γ-rays from active galactic nuclei 	2	7.4	4.2.1	2	14
	2.1.1 TeV emission from blazars	3		4.2.2		15
	2.1.2 y-ray emission from Seyfert galaxies	4		4.2.3		
	2.2 Indirect dark matter searches with observa-				of observable blazars	17
	tions of extragalactic astrophysical sources .	4	4.3	NGC	1068	18
•			5 Dar	k matte	r in dwarf spheroidal galaxies	20
	optimized strategies for dedicated pointings of ex- tragalactic targets	6	6 Sun	mary a	and conclusions	25
4	Results of the simulated observations of TeV-emitti AGN	1. Int	roduct	ion		
_	*Corresponding author				s from Earth with arrays of imaging air (
🚔 francesco. saturni@inaf.it (F.G. Saturni)					es (IACTs; e.g., Aharonian et al., 1992)	
(A. Lamastra); 0000-0002-6336-865X (S. Lombardi); 0000-0002-6311-764X					le in the future development of the γ -ra	-
			-		context, the ASTRI ("Astronomia con S a Replicante Italiana") Mini-Array, a sy	
000	0-0001-8858-4752 (E.M. de Gouveia Dal Pino); 0000-0003-1163-1396	(S.			ASTRI Small-Sized Telescopes (SSTs)	
Ver	rcellone); 0000-0002-6336-865X (S. Lombardi)			-	as a precursor for the Southern site o	
			many p	roposed	as a precursor for the boundern site o	

Galactic Observatory Science with the ASTRI Mini-Array at the Observatorio del Teide

A. D'Aì^{a,*}, E. Amato^{b,c}, A. Burtovoi^{d,e}, A. A. Compagnino^a, M. Fiori^d, A. Giuliani^f, N. La Palombara⁷, A. Paizis⁷, G. Piano^g, F.G. Saturni^h, A. Tutone^{a,i}, C. Arcaro, A. Belfiore, P. Caraveo, A. Costa, S. Crestan, G. Cusumano^a, M. V. del Valle, A. La Barbera^a, V. La Parola^a, S. Lombardi¹, S. Mereghetti, F. Pintore⁴, S. Vercellone, L. Zampieri⁴, C. Bigongiari⁴, M. Cardillo, M. Del Santo^a, F. Lucarelli, G. Morlino, A. Oramaz, G. Pareschi and many many others

^aINAF, IASF-Palermo, via Ugo La Malfa 153, Palermo, Italy ^bINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy ^cDipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (F1), Italy ^dCISAS, Centre of Studies and Activities for Space "G. Colombo", University of Padova, Via Venezia 15, I-35131 Padova, Italy *INAF, Osservatorio A stronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy ^fINAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Alfonso Corti 12, I-20133 Milano , Italy 8INAF, Istituto di Astrofisica e Planetologia Spaziale, Via Fosso del Cavaliere 100, I-00133 Roma, Italy ^hINAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone, Roma, Italy ¹Università degli studi di Palermo, Dipartimento di Fisica e Chimica, Via Archirafi 36 - 90123 Palermo, Italy ¹ASI, Space Science Data Center, Via del Politecnico s.n.c., I-00133 Roma, Italy ^kINAF, Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (LC), Italy

ARTICLE INFO

ABSTRACT

Keywords: Telescopes y-rays: general γ-rays: stars

The ASTRI Mini-Array will be composed of nine imaging atmospheric Cherenkov telescopes at the Observatorio del Teide site. The array will be best suited for astrophysical observations in the 1-200 TeV range with an angular resolution of few arc-minutes and an energy resolution of ~ 10%. A corescience programme in the first four years will be devoted to a limited number of key targets, addressing the most important open scientific questions in the very-high energy domain. At the same time, thanks to a wide field-of-view of about 6° radius, ASTRI Mini-Array will observe many additional field sources, which will constitute the basis for the long-term observatory programme that will eventually cover all the accessible sky. In this paper, we review different astrophysical Galactic environments, e.g. pulsar wind nebulae, supernova remnants, and gamma-ray binaries, and show the results from a set of ASTRI Mini-Array simulations of possible field VHE sources made to highlight the expected performance of the array and the important additional observatory science that will complement the core-science programme.

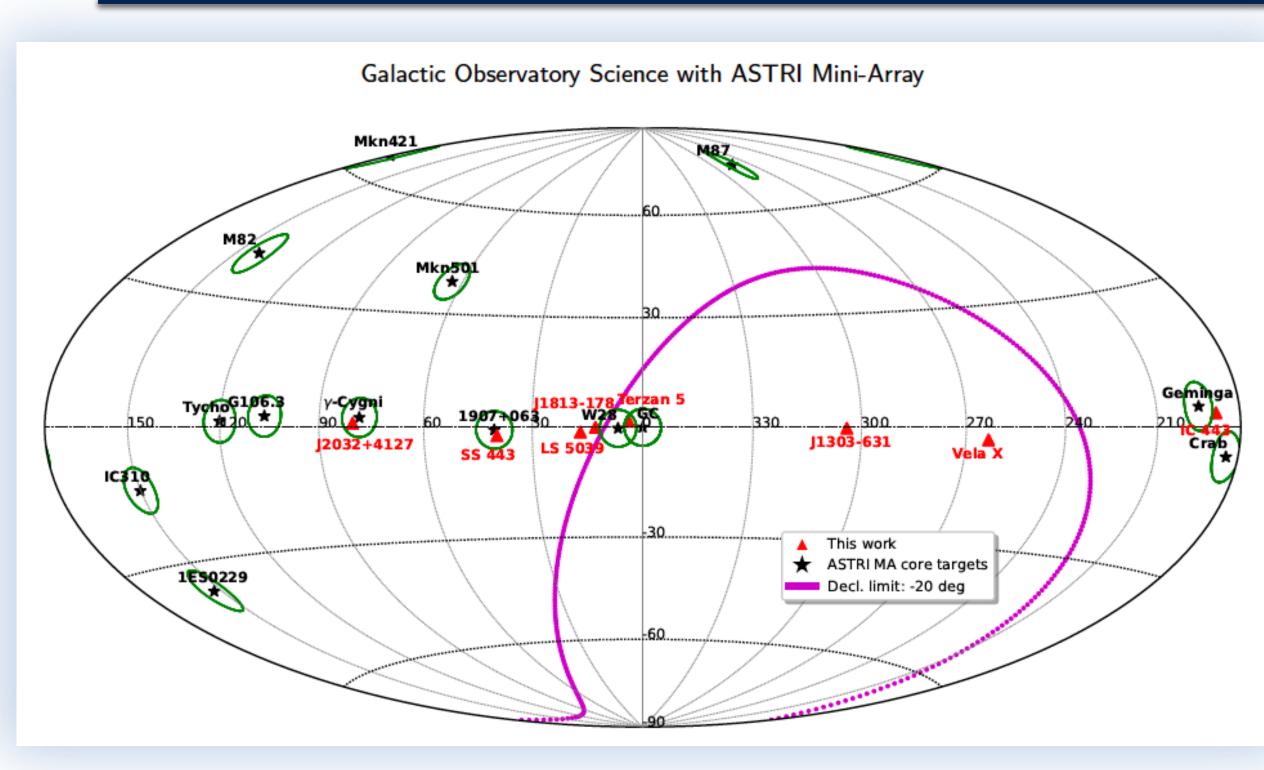
С	ontents			5.4	Energy-dependent morphology: the PWN HES J1303-631	
1	Introduction 1.1 Scientific Simulation Set-ups	2 2	6	TeV	Pulsars	1
2	Overview of the Galaxy in the TeV band	2	7	-	Binaries VHEemission from Galactic micro-quasars:	2
3	A Survey of the Cygnus Region	5		7.2	SS 433	2
4	Supernova Remnants	9			ray binary LS 5039	2
	4.1 VHE emission from a middle-age SNR: IC443			7.3	Further observations of γ -ray binaries and μ -quasars	2
5	Pulsar Wind Nebulae	11				
	5.1 A moderately bright PWN: HESS J1813-178	12	8		r possible Galactic targets	2
	5.2 A γ-ray-binary in a PWN: the strange case			8.1	The Galactic Center: diffuse emission and	
	of TeV J2032+4130	13			dark matter search	2
	5.3 A bright extended PWN: Vela X	15		8.2	VHE emission from globular clusters: the	
_	*Corresponding author			8.3	case Terzan 5	2
Ar	ORCID(s): 0000-0002-5842-1036 (A. D'Al); 0000-0002-9881-8112 (I auto); 0000-0002-8734-808X (A. Burtovoi); 0000-0002-7352-6818 (M.	5 .	9	Conc	lusions	2

A. D'A) et al.: Preprint submitted to Elsevier

Fiori); 0000-0002-9332-5319 (G. Piano); 0000-0002-2840-0001 (A. Tutone);

0000-0002-6336-865X (S. Lombardi); 0000-0002-3869-2925 (F. Pintore)

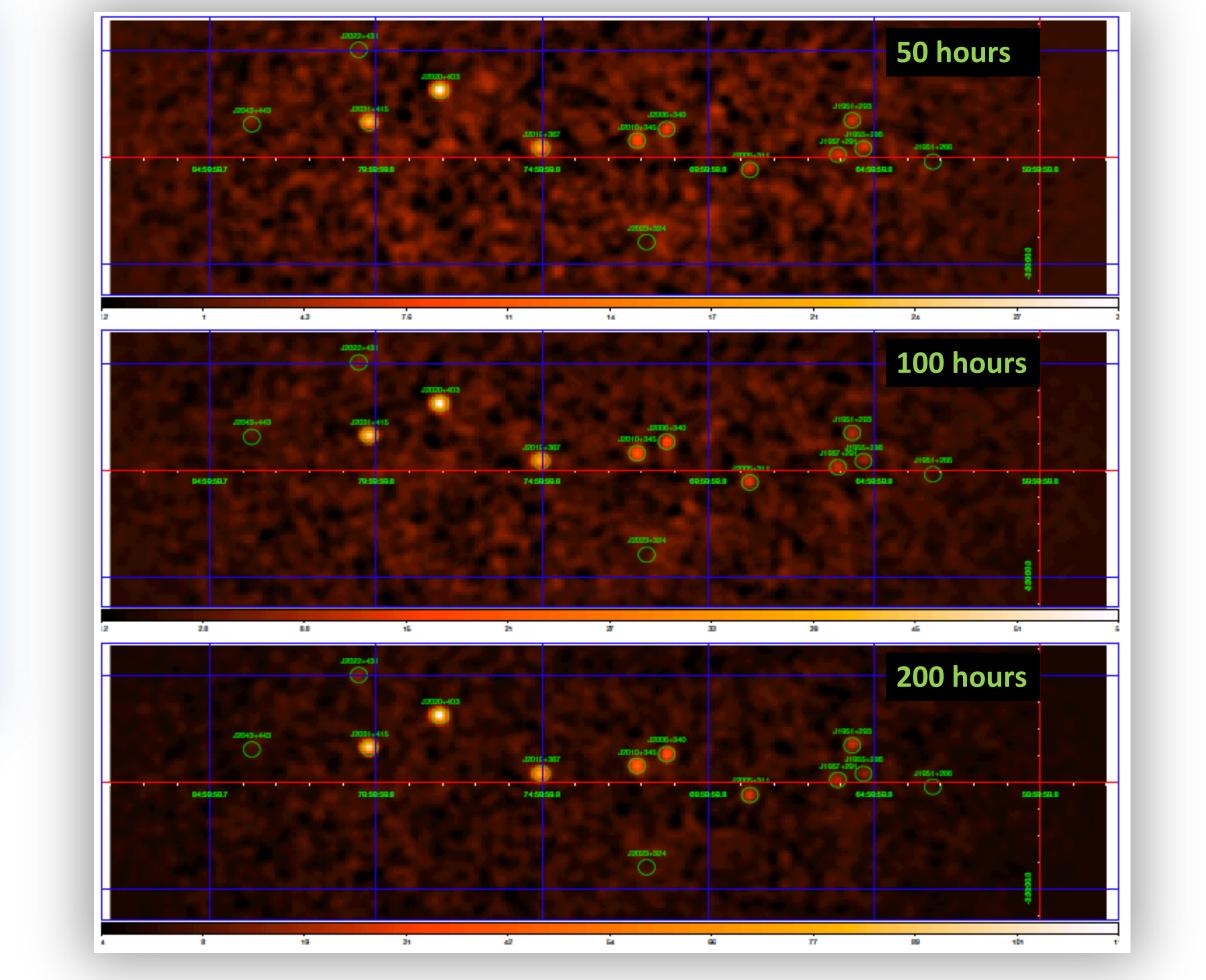
11/29



. . . 17 18 20SHEET 21 . . . 1e γ-. . . 22 and . . . 25 25 and 25 26 ae. 27 $\mathbf{28}$

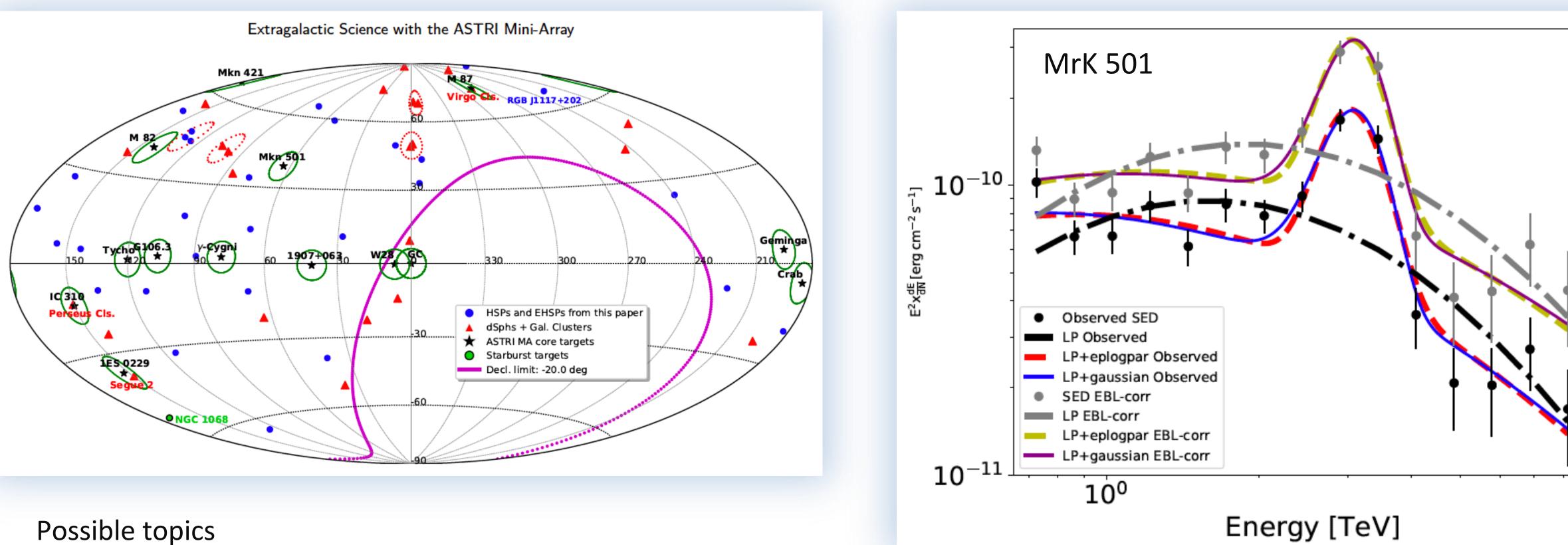
Page 1 of 30

Glimpse on Galactic Obs. Science



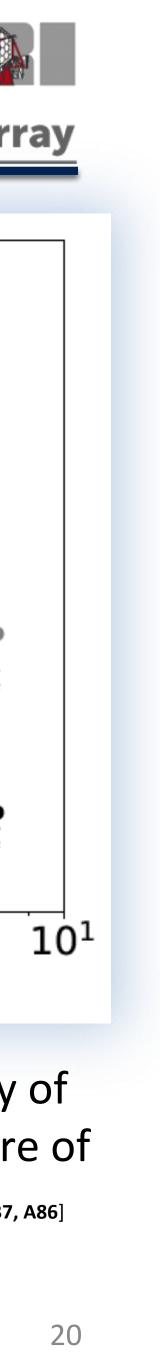
Possible topics

- Gamma-ray binaries
- Micro-quasars
- Peculiar PWNe and SNRs
- Serendipitous sources
- **Galactic Plane scans**



Scan of the Cygnus Region at different T_{exp}

Glimpse on Extra-galactic Obs. Science



- TeV emission from Seyferts
- Constraints on dark matter
- Extreme blazars
- Serendipitous sources
- **Newly-discovered spectral features**

Mini-Array

1 h of simulated data taking clearly shows the ability of the ASTRI Mini-Array to fully detect a spectral feature of the type hinted in the MAGIC data [MAGIC collaboration, 2020. A&A 637, A86]

Potential VHE synergies

- **MeerKat and ASCAP** (SKA precursors in the South) will allow to investigate the Galactic Center and its features
- **LOFAR** (SKA precursor in the North) will open a new science window in the low-frequency radio band and monitor 2/3 of the sky nightly in Radio Sky Monitor mode, being an excellent radio transient factory
- **SRT** has already observed sources of interestest for the ASTRI Mini-Array, such as W 44, IC 433 and Tycho, making it an excellent observatory for future synergies in the northern hemisphere
- **TNG** is located in La Palma and can be extremely useful for optical follow-up observations. Several telescopes are also accessible at the IAC site (Las Cumbres Global Observatory, the STELLA Robotic telescopes, the PIRATE telescope, the Liverpool Robotic Telescope and the Gran Telescopio de Canarias). The WEBT Consortium is dedicated to the observation of blazars in the radio, millimetre, infrared and optical wavelength, fundamental for blazar SEDs
- **INTEGRAL** and **NuSTAR** will allow us to complement and extend the spectral performance of **eROSITA**, XMM-**Newton** and **Chandra**, while **IXPE** will open the X-ray polarimentry window
- Swift, AGILE and Fermi will be extremely important for their large FoV and for the Swift ability to promptly react to transients

Potential VHE synergies

beyond one

Both MAGIC and CTAO-N will be of paramount importance for the study of GRBs, as will be their capability to investigate not only the local Universe, but also reaching redshifts well

• Both MAGIC and CTAO-N will allow us to extend the ASTRI Mini-Array spectral performance in the sub-TeV regime, with almost no breaks from a few tens of GeV up to hundreds of TeV

Particle showers arrays (PSAs) detected several sources with photons up to several hundreds of TeV. Synergies are important to make use of the ASTRI Mini-Array angular and energy resolution in combination with the LHAASO, HAWC and Tibet-ASy extended energy range

del Teide with a 4 (core science) + 4 (observatory science) year programme

crowded/rich fields (e.g., the Galactic Center) with a single pointing

studies of extended sources

energy range 5-200 TeV in the Northern hemisphere

domain (excellent angular and energy resolutions) typical of IACTs

- The ASTRI Mini-Array will start scientific observations in 2024 from the Observatorio
- Its 10° field of view will allow us to investigate both extended sources (e.g., SNRs) and
- Its 3' angular resolution at 10 TeV will allow us to perform detailed morphological

- Its sensitivity extending above 100 TeV will make it the most sensitive IACT in the
- It will join together the very high-energy domain typical of PSAs with the precision

