

Status of the Monte Carlo simulations of the ASTRI Mini-Array at Tenerife

Saverio Lombardi – INAF Osservatorio Astronomico di Roma

for the ASTRI Project

ASTRI Project Committee Meeting, 25/02/2022

Outline

- ASTRI Monte Carlo simulation chain
- ASTRI Monte Carlo data reduction and analysis chain
- Available Monte Carlo simulations @Teide
- Key performance features
- Monte Carlo simulation activities
- Summary

ASTRI Mini-Array – Software WP

S. Lombardi, ASTRI Project Committee Meeting, 25/02/2022

3

ASTRI Mini-Array – Simulation chain (I)

Credits: C. Bigongiari

CORSIKA

https://www.iap.kit.edu/corsika/index.php

Used version 6.99 for a long time (same as CTA Prod4) Moved to version 7.74

Sim telarray

https://www.mpi-hd.mpg.de/hfm/CTA/ MC/Software/

Using version 2018.11.07 for a long time (same as CTA Prod4) Moved to version 2021.12.25

Stay aligned to CTA and exploit some new features

4

ASTRI Mini-Array – Simulation chain (II)

5

We store on disk both CORSIKA and Sim_telarray output

ASTRI Mini-Array – Data reduction and analysis chain

(2018)

107070

SPIE

(2016);

991315

SPIE

Functional design layout of the ASTRI data reduction and scientific analysis software package From left to right, functional breakdown stages are shown as dotted boxes, I/O data as grey cylinder pipeline I/O data; grey: auxiliary I/O data), basic software functionalities as dashed boxes, data levels as grey boxes (thin: telescope-wise data; thick: array-wise data), and data processing executables as solid boxes. The external packages for the scientific analysis, i.e. *ctools* and *Gammapy*, are written in bright grey.

rical	A-SciSoft (ASTRI Scientific Softwa aka astripipe)
r	 End-to-End pipeline from RAW data (DL0 Science Products (DL4)
ireco st	 FITS data format from DL0 to DL4
SINGLE-TELESCOPE	 C++/Python (pipeline and auxiliary modules)
	 Single-telescope and array data reduction analysis
ireco ^A A = ARRAY	 Monte Carlo data reduction and analysis (so extensively tested)
iana	 Real data reduction and analysis (so far tes with ASTRI-Horn telescope)
Gammapy	 Scientific analysis from DL3 to DL4 vectors external science tools (Gammapy and ctool
ge (A-SciSoft). rs (black: main	

6

ASTRI Mini-Array – Available MC Simulations @Teide

"Prod1-Teide" Monte Carlo production (2020) (provisional telescope positions)

PARTICLE	Emin [TeV]	Emax [TeV]	Spectral Slope	IPmax [m]	View Cone [deg]	Zenith [deg]	Azimuth [deg]	Number of Simulated Runs	Number of Simulated Showers per Run	Number of Simulated Showers
GammaPointlike	0.1	330	-1.5	2000	0	20	180	1000	10000	10 ⁷
GammaDiffuse	0.1	330	-1.5	2400	10	20	180	5000	20000	10 ⁸
Electron	0.1	330	-1.5	2400	10	20	180	5000	20000	10 ⁸
Proton	0.1	600	-1.5	2400	10	20	180	50000	20000	10 ⁹
TOTAL								61000		1.21 × 10 ⁹

• "Prod2-Teide" Monte Carlo production (2021) (final telescope positions; higher MC statistics)

PARTICLE	Emin [TeV]	Emax [TeV]	Spectral Slope	IPmax [m]	View Cone [deg]	Zenith [deg]	Azimuth [deg]	Number of Simulated Runs	Number of Simulated Showers per Run	Number of Simulated Showers
GammaPointlike	0.1	330	-1.5	2000	0	20	180	2 × 2000	10000	4 × 10 ⁷
GammaDiffuse	0.1	330	-1.5	2400	10	20	180	2 × 10000	20000	4 × 10 ⁸
Electron	0.1	330	-1.5	2400	10	20	180	2 × 5000	20000	2 × 10 ⁸
Proton	0.1	600	-1.5	2400	10	20	180	2 × 50000	20000	2 × 10 ⁹
TOTAL								134000		2.64 × 10 ⁹

ASTRI Mini-Array – Final Telescope Layout

TELID	TELX	TELY	TELZ
	[m]	[m]	[m]
ASTRI-1	-77.590	-99.710	26.000
ASTRI-2	56.190	-138.500	15.000
ASTRI-3	-108.380	49.290	31.000
ASTRI-4	52.920	42.520	23.000
ASTRI-5	223.750	55.450	25.000
ASTRI-6	26.220	245.690	18.000
ASTRI-7	198.410	265.710	9.000
ASTRI-8	-149.800	-291.800	43.150
ASTRI-9	-221.730	-128.640	26.000

2D interte	elescope dis	stances							
Tel	ASTRI-1	ASTRI-2	ASTRI-3	ASTRI-4	ASTRI-5	ASTRI-6	ASTRI-7	ASTRI-8	AST
ASTRI- 1	0.000	139.290	152.148	193.034	338.940	360.663	457.939	205.214	147.
ASTRI- 2	139.290	0.000	249.697	181.050	256.306	385.357	428.500	256.774	278.
ASTRI- 3	152.148	249.697	0.000	161.442	332.187	238.097	375.443	343.596	210.
ASTRI- 4	193.034	181.050	161.442	0.000	171.319	204.917	266.423	390.980	323.
ASTRI- 5	338.940	256.306	332.187	171.319	0.000	274.243	211.781	510.022	482.
ASTRI- 6	360.663	385.357	238.097	204.917	274.243	0.000	173.350	565.578	449.
ASTRI- 7	457.939	428.500	375.443	266.423	211.781	173.350	0.000	657.318	576.
ASTRI- 8	205.214	256.774	343.596	390.980	510.022	565.578	657.318	0.000	178.
ASTRI- 9	147.015	278.095	210.968	323.618	482.018	449.001	576.220	178.312	0.0
							1		

ASTRI Mini-Array – Final Telescope Layout

- Telescope positions -> trade-off between performance and site constraints

Telescope next-neighbor distance: ~160 m \rightarrow enhanced sensitivity at TeV / multi-TeV energy scales

S. Lombardi, ASTRI Project Committee Meeting, 25/02/2022

ASTRI Mini-Array Differential Sensitivity:

- Better than present-generation IACTs above a few TeV
- Comparable to CTAO-N(Alpha) above a few tens of TeV
- \succ Surpassed by HAWC (507 days) and LHAASO (1 year) sensitivity above a few tens of TeV, BUT substantially better angular/energy resolution at those energies

→ ASTRI Mini-Array fully functional complement at the TeV / multi-TeV energies to present- and next-generation gamma-ray observatories in the Northern Hemisphere

Angular resolution: ~0.05° (3 arcmin) above a few TeV -> important for morphological studies of sources detected by HAWC and LHAASO in the multi-TeV regime

11

Energy resolution: ~10% above a few TeV \rightarrow important for spectral studies (e.g. cut-off, bumps, ...) in the TeV / multi-TeV regime

enhanced chance for serendipitous discoveries

12

Off-axis Performance: almost homogeneous acceptance (within a factor ~2) over ~10° FoV > important for simultaneous multi-target observations / extended sources / large surveys of the sky /

enhanced chance for serendipitous discoveries

Off-axis Performance: almost homogeneous acceptance (within a factor ~2) over ~10° FoV > important for simultaneous multi-target observations / extended sources / large surveys of the sky /

ASTRI Mini-Array – Phase 1.5

	AS	ELID STRI-1	-7	TELX [m] 77.590) -9	ELY [m] 9.710	TE [r 26.	LZ n] 000		
2D interte	D intertelescope distances									
						1	1			
Tel	ASTRI-1									
ASTRI- 1	0.000									
	Phase 1.5 site implementation (ASTRI-INAF-PLA-2000-004)									
	ASTRI-1									

ASTRI Mini-Array – Phase 2

S. Lombardi, ASTRI Project Committee Meeting, 25/02/2022

	TE AS	ELID TRI-1	-7	TELX [m] 77.590	٦ -9	FELY [m] 9.710	TE [r 26.	ELZ n] 000	
	AS AS	TRI-8 TRI-9	-14 -22	49.800 21.730	-29 -12	1.800 8.640	43. 26.	150 000	
2D interte	lescope dis	stances							
Tel	ASTRI-1							ASTRI-8	ASTRI-
ASTRI- 1	0.000						-	205.214	147.015
-	Ph	ase (2 s astri	ite in	nple	eme 000-004	ntati	ion	
-	I	1		AST	RI-8 RI-9			1	1
ASTRI- 8	205.214						-	0.000	178.312
ASTRI- 9	147.015							178.312	0.000

15

ASTRI Mini-Array – Phase 2 performance

- Full Array (9 telescopes) – Phase 2 (3 telescopes)

On-axis Differential Sensitivity

ASTRI Mini-Array – Phase 2 performance

- Full Array (9 telescopes) Phase 2 (3 telescopes) ____

On-axis Angular Resolution 0.3 Angular Resolution [deg] ASTRI MA 50.0h onaxis (Prod2-9tel, 20deg, Average) 0.25 RI MA 50.0h onaxis (Prod2-3tel, 20deg, Average) 0.2 0.15 0.1 0.05 0 -0.5 0.5 2.5 1.5 2 0 -1 log₁₀(E [TeV])

ASTRI Mini-Array – Phase 2 performance

- Full Array (9 telescopes) – Phase 2 (3 telescopes)

ASTRI Mini-Array – Current MC Simulation activities

- Massive Monte Carlo production at High Zenith Angles (ZA):
 - ZA = 60 deg
 - 4 Azimuth: North, South, East, West
 - Realistic NSB (in dark condition)
 - Assessing the ASTRI Mini-Array performance at high zenith angles
 - Scientific use cases: Galactic Center, ...
- Monte Carlo production at Low ZA with different NSB levels:
 - From Prod2_Teide CORSIKA outputs
 - $ZA = 20 \deg$
 - 2 Azimuth: North, South
 - Realistic NSB at different Moonlight levels
 - Assessing the ASTRI Mini-Array performance under Moonlight conditions
 - Evaluating the maximum duty cycle achievable by the system

"Prod2_Teide_60deg" (ongoing)

"Prod2_Teide_NSB" (preliminary phase)

ASTRI Mini-Array – Current MC Simulation activities

- Massive Monte Carlo production at Serra La Nave (ASTRI-Horn telescope):
 - $10 \deg < ZA < 40 \deg$
 - **Continuum Azimuth distribution**
 - Realistic NSB (in dark condition)
 - Revised atmospheric profile and geomagnetic field model
 - Validation of the ASTRI (single-telescope) simulation chain
- Massive Monte Carlo production at Medium Zenith Angles (ZA):
 - ZA = 40 deg
 - 4 Azimuth: North, South, East, West
 - Realistic NSB (in dark condition)
 - Assessing the ASTRI Mini-Array performance at medium zenith angles
 - Scientific use cases: many
- Noticeable "ancillary" Monte Carlo productions:
 - Monte Carlo production for Illuminator (Calibration System WP)
 - Monte Carlo production for Stereo Event Trigger (DPS WP)

S. Lombardi, ASTRI Project Committee Meeting, 25/02/2022

"Prod2_SLN" (preliminary phase)

"Prod2_Teide_40deg" (planned)

"Prod1_ILL" (delivered) "Prod1 SEB" (planned)

Summary

- ASTRI Monte Carlo Simulation chain in place (still being optimized) Revision of CORSIKA and Sim_telarray configurations ongoing Implementation of realistic NSB levels (at different Alt-Az positions) and of HW response to them Check of Geomagnetic field and Atmospheric profile ongoing
- ASTRI Monte Carlo Data reduction and analysis chain in place (still being optimized) Robust standard analysis methods implemented (new reconstruction methods foreseen) Room for improvement of overall analysis performance
- 2 Massive MC productions @Teide available and used to assess key performance features
- Next Massive MC productions to assess performance under higher ZA and Moonlight conditions
- First (single-telescope) validation foreseen (at the moment) with upcoming ASTRI-Horn data
- Intense activities ongoing in both MC Simulations and Data Processing WGs
- Detailed working plan to achieve an efficient data reduction and analysis of first real data taken @Teide (in Phase 1.5 & 2) under discussion

Backup slides

S. Lombardi, ASTRI Project Committee Meeting, 25/02/2022

22

Prod2-Teide

 Full Array (Prod1-Teide) – Full Array (Prod2-Teide)

Paranal vs. Teide

Prod2-Teide

Paranal vs. Teide

– Full Array (@Paranal) – Full Array (@Teide)

Data reduction and analysis consistency check

– Full Array (Prod1-Teide, astripipe) – Full Array (Prod1-Teide, eventdisplay)

