



# Design and implementation of Stellar Intensity Interferometry on the ASTRI Mini-Array

Luca Zampieri INAF-Astronomical Observatory of Padova

For the ASTRI Mini-Array SI<sup>3</sup> Work Package

ASTRI Project Committee - Nov 29, 2021

### Outline

- Science: Potential goals
- ASTRI SI<sup>3</sup>: Design
- ASTRI SII: Program implementation



### Stellar Intensity Interferometry with the ASTRI Mini-Array

#### Intensity Interferometry

Technique based on the measurement of the 2nd order spatial correlation of the radiation intensities of a star measured at two telescopes

The main observable is the (discrete) degree of coherence

![](_page_1_Picture_5.jpeg)

![](_page_1_Picture_6.jpeg)

![](_page_1_Figure_7.jpeg)

### Stellar Intensity Interferometry (SII) with ASTRI

The ASTRI Mini-array provides a suitable infrastructure for performing SII measurements

Main goal: Achieving optical imaging with resolution of ~100 microarcseconds using the long multiple baselines (36) of the 9 ASTRI SSTs

![](_page_2_Picture_0.jpeg)

### Stellar Intensity Interferometry: calculating g2 in photon counting

 $\mathbf{g}^{(2)} = \mathbf{N}_{\mathsf{T1-T2}} \mathbf{N} / (\mathbf{N}_{\mathsf{T1}} \mathbf{N}_{\mathsf{T2}})$ 

 $N_{T1}$ ,  $N_{T2}$  = number of photons detected at the two telescopes in interval T  $N_{T1-T2}$  = number of simultaneous detections in small time bins dt in T N = T/dt (number of bins in interval T)

 $\mathbf{g}^{(2)}$  is calculated in all intervals of an acquisition and values are then averaged

The optical design of ASTRI SI3 allows us to perform **measurements at zero baseline** using the detectors in the quadrants A, B, C, D

 $g^{(2)} = N_{x-y} N / (N_x N_y)$  [X, Y] are combinations of the quadrants

Calibrated value of  $g^{(2)}$  (important to remove systematics at zero baseline)

 $g^{(2)} = 1 + g^{(2)}(narrow) - g^{(2)}(wide+ND1)$ 

Narrow band filter (II): 440 nm CW, 3 nm FWHM Wide band filter + 10x attenuator: 440 nm CW, 30 nm FWHM + ND1 Strategy follows closely the one implemented in the Asiago intensity inteferometer (Zampieri et al. 2021)

![](_page_2_Picture_11.jpeg)

![](_page_3_Figure_0.jpeg)

# Stellar Intensity Interferometry with the ASTRI Mini-Array

The ASTRI Stellar Intensity Interferometry Instrument (SI<sup>3</sup>) is conceived to *measure the* 2nd order discrete degree of spatial and temporal coherence (g2) of a star

# Photon counting approach, performing the correlation off-line

To this end, accurate measurements (~1 ns) of single photon arrival times in a narrow optical wavelength range (~5 nm) are needed ASTRI Stellar Intensity Interferometry Instrument

![](_page_3_Figure_6.jpeg)

![](_page_3_Picture_7.jpeg)

![](_page_4_Picture_0.jpeg)

Determining the radius and surface features in early (B-through-F) type stars Measurements over many baselines provide a tightly sampling of g2(d)

![](_page_4_Figure_2.jpeg)

![](_page_5_Picture_0.jpeg)

### **Stellar Intensity Interferometry: image synthesis**

Synthetised image produced on the (u, v) plane, modelled with FFT methods to reconstruct the actual image

![](_page_5_Figure_3.jpeg)

L. Zampieri – Intensity Interferometry with the ASTRI MA

+ pSCT

420 nm

effects

![](_page_6_Picture_0.jpeg)

### Stellar Intensity Interferometry with the ASTRI Mini-Array: Imaging rapid rotators

![](_page_6_Picture_2.jpeg)

The ability to image the surface is the superior method to unambiguously measure the shape of a star

The more baselines used, the more model independent an image will be (CHARA has 6 telescopes, ASTRI MA has 9 tel.)

CHARA observations show that no rapid rotators have temperature contrasts as high as expected, inconsistent with any von Zeipel-like gravity darkening prescription assuming uniform rotation

Unexpected fast rotation of evolved sub-giants (Che et al. 2011)

#### Importance for stellar evolution:

- independent measurement of the star rotational speed
- revealing differential rotation (and meridional circulation)
- properly placing rapid rotators on the HR diagram
- understanding core-envelope coupling

ASTRI SI<sup>3</sup> can measure the oblateness of many A-type and B-type stars in visible light, extending the sample collected with CHARA

![](_page_7_Picture_0.jpeg)

### Stellar Intensity Interferometry with the ASTRI Mini-Array: Imaging bright spots with the highest angular resolution

![](_page_7_Figure_2.jpeg)

CHARA/MIRC IR (H band) image of **RS Per** (M3.5lab) and T Per (M2lab)

A visible light image of **Betelgeuse (M2lab)**, taken with VLTI/SPHERE on 2019 Dec 26 (Montargès et al. 2020), revealed a substantial dimming in the southern hemisphere (Dupree et al. 2020)

Bright spots and dimmer areas are present and are caused by temperature variations

Importance for stellar evolution: They provide evidence of large convective cells/motions on the stellar surface

ASTRI SI<sup>3</sup> can resolve bright spots on smaller stars, pushing the limits of the present capabilities of interferometry (see e. g. Roettenbacher et al. 2018)

![](_page_8_Picture_0.jpeg)

![](_page_8_Figure_1.jpeg)

**Data acquisition** 

**Focal Plane Optics Convex spherical mirror** + spherical lenses + narrow-band filters

> 60 Mcounts/s max rate 500 MB/s max data rate ~ 100 ps time res. < 10 ns double hit res.

![](_page_8_Picture_4.jpeg)

ASTRI FP

![](_page_9_Picture_0.jpeg)

# **ASTRI SI<sup>3</sup>: Focal Plane Optics**

- Convex spherical mirror (M3) + 3 spherical lenses
- Narrow-band filters: CW: 440-500 nm – FWHM: 3-8 nm

Deployment and stability tolerances:
 +/- 1 mm in x, y, z
 +/- 0.07 deg tilt x and y

![](_page_9_Figure_5.jpeg)

![](_page_10_Picture_0.jpeg)

•

# ASTRI SI<sup>3</sup>: Front End Electronics

**Mini-Array** 

![](_page_10_Figure_3.jpeg)

VOLTAGE DISTRIBUTION BOX and CCU (VDB + CCU)

![](_page_10_Picture_5.jpeg)

![](_page_10_Figure_6.jpeg)

#### **Test: dark**

**Double pulse** resolution ~10 ns per channel and < 10 ns between different channels

![](_page_10_Figure_9.jpeg)

![](_page_10_Figure_10.jpeg)

Almost linear response up to ~60 Mcounts/s (4 channels)

![](_page_11_Picture_0.jpeg)

|                     |                                                                                                                                                                                                                       | ASTR                                          | I SI <sup>3</sup> : Tea                | am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                    |                                                                |                                                           |                      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|----------------------|
| A STANDARD STANDARD | Mini-Array                                                                                                                                                                                                            |                                               |                                        | ASTRI SI <sup>3</sup> – Organization Chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                    |                                                                |                                                           |                      |
|                     | Positionin<br>Sub-system<br>(C. Gargano                                                                                                                                                                               | g<br>Doptics<br>Sub-system<br>(G. Rodeghiero) | Detector<br>Sub-system<br>(G. Bonanno) | PRE-FEE<br>+FEE<br>Sub-system<br>(G. Bonanno)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDB+CCU<br>Sub-system<br>(G. Bonanno) | BEE<br>Sub-system<br>(L. Zampieri) | Acquisition<br>and control<br>Sub-system<br>(L. Zampieri)      | Science data<br>processing<br>Sub-system<br>(L. Zampieri) | AIV<br>(L. Zampieri) |
|                     | C. Gargano                                                                                                                                                                                                            | G. Naletto                                    | G. Bonanno                             | G. Bonanno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. Bonanno                            | G. Naletto                         | P. Bruno                                                       | M. Fiori                                                  | M. Fiori             |
|                     | L. Lessio                                                                                                                                                                                                             | C. Pernechele                                 | G. Romeo                               | P. Bruno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L. Paoletti                           | L. Zampieri                        | M. Fiori                                                       | L. Zampieri                                               | L. Zampieri          |
|                     |                                                                                                                                                                                                                       | G. Rodeghiero                                 |                                        | A. Grillo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G. Romeo                              |                                    | G. Naletto                                                     |                                                           |                      |
|                     |                                                                                                                                                                                                                       |                                               |                                        | G. Romeo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                    | L. Zampieri                                                    |                                                           |                      |
|                     |                                                                                                                                                                                                                       |                                               |                                        | M. Timpanaro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                    | + members<br>of the ASTRI<br>Mini-array<br>soft./hard.<br>team |                                                           |                      |
|                     | PRE-FEE: Pre Front End Electronics<br>FEE: Front End Electronics<br>VDB: Voltage Distribution Board<br>CCU: Control and Communication Unit<br>BEE: Back End Electronics<br>AIV: Assembly Integration and Verification |                                               |                                        | <ul> <li>Work Package within the framework of the ASTRI project (ASTRI Project Office directly involved)</li> <li>All technological areas (optics, electronics, mechanics) well covered at present</li> <li>Main INAF Institutes involved: OA Padova (0.65 FTE), OA Catania (1.1 FTE), IASF Palermo (0.2 FTE), OAS Bologna (0.1 FTE)</li> <li>Close collaboration with Univ. Padova (0.3 FTE), INFN Roma Tor Vergata and other national and international Institutes/working groups (e.g. MAGIC, VERITAS, CTA)</li> </ul> |                                       |                                    |                                                                |                                                           |                      |

![](_page_13_Picture_0.jpeg)

### SII with the ASTRI Mini-Array: Schedule of next activities

### Program – Framework: 2021-2023

### **ASTRI SI<sup>3</sup>**

- \* Critical assessment of the design
- \* Documents for Preliminary Design Review:
  - Science Requirements document (ASTRI-INAF-SCI-7400-001)
  - Concept Design document (ASTRI-DES-7400-001)
  - System Requirements document (ASTRI-INAF-SPE-7400-002)
- \* Preliminary Design Review
- \* Science data processing software/activities (dedicated pipelines)
- \* Starting realization prototype, and testing it (Serra La Nave, Asiago)
- \* Completing documentation
- \* Detailed Design Review
- \* Contributing to the design of an SII instrument for CTA
- \* Building the instruments
- \* AIV (El Teide)

### Science

- \* Presentation of the instrument to a wider Community
- \* Science data simulation
- \* Contributing to the CTA SII science
- \* Selection scientific cases, programs and targets

Original schedule delayed by 3-6 months because of delays in the delivery of components for the prototype (missing basic components/raw materials)

![](_page_13_Figure_23.jpeg)